
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (15): 122-129.doi: 10.11924/j.issn.1000-6850.casb2021-0598
Previous Articles Next Articles
Received:2021-06-09
															
							
																	Revised:2022-01-04
															
							
															
							
																	Online:2022-05-25
															
							
																	Published:2022-06-07
															
						Contact:
								MENG Zhaojun   
																	E-mail:382459967@qq.com;mengzj2018@nefu.edu.cn
																					CLC Number:
LV Jinyan, MENG Zhaojun. The Olfactory Recognition Mechanism of Herbivore Insects on Plant Volatiles: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 122-129.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0598
| 气味 | 种类 | 特性 | 
|---|---|---|
| 特异性气味 | 烯丙基异硫氰酸酯 | 十字花科植物特异性成分,有刺激性气味,对多种昆虫有驱避作用[ | 
| 硫醚 | 葱属植物中分离的特异性成分,具刺激气味[ | |
| 一般气味 | 含氮化合物 | 一般呈碱性,并可还原成胺类化合物。 | 
| 脂肪酸衍生物 | 可参与植物损伤响应及对昆虫的防御[ | |
| 萜烯类挥发物及其衍生物 | 多为有特殊气味的挥发性油状液体,如松节油中的α-蒎烯、β-蒎烯等 | |
| 绿叶性挥发物(含6个碳原子的醇、醛、酯) | 正常情况下植物不释放或释放少量,而受到虫害胁迫后能迅速诱导大量释放[ | 
| 气味 | 种类 | 特性 | 
|---|---|---|
| 特异性气味 | 烯丙基异硫氰酸酯 | 十字花科植物特异性成分,有刺激性气味,对多种昆虫有驱避作用[ | 
| 硫醚 | 葱属植物中分离的特异性成分,具刺激气味[ | |
| 一般气味 | 含氮化合物 | 一般呈碱性,并可还原成胺类化合物。 | 
| 脂肪酸衍生物 | 可参与植物损伤响应及对昆虫的防御[ | |
| 萜烯类挥发物及其衍生物 | 多为有特殊气味的挥发性油状液体,如松节油中的α-蒎烯、β-蒎烯等 | |
| 绿叶性挥发物(含6个碳原子的醇、醛、酯) | 正常情况下植物不释放或释放少量,而受到虫害胁迫后能迅速诱导大量释放[ | 
| [1] | 钦俊德, 王琛柱. 论昆虫与植物的相互作用和进化的关系[J]. 昆虫学报, 2001, 44(3):360-365. | 
| [2] | 陆宴辉, 张永军, 吴孔明. 植食性昆虫的寄主选择机理及行为调控策略[J]. 生态学报, 2008, 28(10):5113-5122. | 
| [3] | KAUPP U B. Olfactory signalling in vertebrates and insects: differences and commonalities[J]. Nature reviews neuroscience, 2010, 11(Suppl2):188-200. doi: 10.1038/nrn2789 URL | 
| [4] | 卢伟, 侯茂林, 文吉辉,等. 植物挥发性次生物质对植食性昆虫的影响[J]. 植物保护, 2007, 33(3):7-11. | 
| [5] | 杜永均, 严福顺. 植物挥发性次生物质在植食性昆虫寄生植物和昆虫天敌关系中的作用机理[J]. 昆虫学报, 1994, 37(2):233-250. | 
| [6] | ZU P, KARINA B, DEL-VAL E K,  et al. Information arms race explains plant-herbivore chemical communication in ecological communities[J]. Science, 2020, 368(6497):1377-1381. doi: 10.1126/science.aba2965 URL | 
| [7] | DICKE M. Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective[J]. Biochemical systematics and ecology, 2000, 28(7):601-617. doi: 10.1016/S0305-1978(99)00106-4 URL | 
| [8] | VET L E M. From chemical to population ecology: infochemical use in an evolutionary context[J]. Journal of chemical ecology, 1999, 25(1):31-49. doi: 10.1023/A:1020833015559 URL | 
| [9] | 杜家纬. 植物-昆虫间的化学通讯及其行为控制[J]. 植物生理学报, 2001, 27(3):193-200. | 
| [10] | XIN B, LIU P, ZHANG S, et al. Research and application of Chouioia cunea Yang (Hymenoptera: Eulophidae) in China[J]. Biocontrol science&technology, 2017, 27(3):301-310. | 
| [11] | 董子舒, 张玉静, 段云博,等. 植食性昆虫产卵寄主选择影响因素及机制的研究进展[J]. 南方农业学报, 2017, 48(5):837-843. | 
| [12] | 孙仲享, 宋圆圆, 曾任森. 植物挥发物介导的种内与种间关系研究进展[J]. 华南农业大学学报, 2019, 40(5):166-174. | 
| [13] | XIAO D, SRIVASTAVA S K, LEW K L,  et al. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G, 2, /M arrest and inducing apoptosis[J]. Carcinogenesis, 2003, 24(5):891-897. doi: 10.1093/carcin/bgg023 URL | 
| [14] | 何洪巨, 唐晓伟, 宋曙辉,等.韭葱挥发性物质的气相色谱-质谱分析[A].中国质谱学会. 中国质谱学会第七届会员代表大会暨学术报告会论文集[C]. 中国质谱学会, 2004:2-3. | 
| [15] | 汤丽川, 赵永亮, 毛龙,等. 植物脂肪酸及其衍生物防御信号研究进展[J]. 河南师范大学学报:自然科学版, 2012, 40(2):127-131. | 
| [16] | VISSER J H, AVE D A. General green leaf volatiles in the olfactory orientation of the colorado beetle, Leptinotarsa decemlineata[J]. Entomologia experimentalis et applicata, 2011, 24(3):738-749. doi: 10.1111/j.1570-7458.1978.tb02838.x URL | 
| [17] | TURLINGS T C J, ERB M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential[J]. Annual review of entomology, 2018, 63(1):433-452. doi: 10.1146/annurev-ento-020117-043507 URL | 
| [18] | VISSER J H. Host odor perception in phytophagous insects[J]. Annual review of entomology, 1986, 31(1):121-144. doi: 10.1146/annurev.en.31.010186.001005 URL | 
| [19] | DEFAGO M T, VIDAL A M, VALLADARES G. To Smell you better: prior food deprivation increases herbivore insect responsiveness to host plant odor cues[J]. Journal of insect behavior, 2016, 29(5):527-534. doi: 10.1007/s10905-016-9577-x URL | 
| [20] | 李欣, 白素芬. 寄主植物-植食性昆虫-天敌三重营养关系中化学生态学的研究进展[J]. 河南农业大学学报, 2003, 37(3):224-232. | 
| [21] | 李娜. 专食性天敌莲草直胸跳甲对寄主植物选择的嗅觉行为研究[D]. 太原: 山西农业大学, 2016. | 
| [22] | RAJAPAKSE C N K, WALTER G H, MOORE C J,  et al. Host recognition by a polyphagous lepidopteran (Helicover paarmigera): primary host plants, host produced volatiles and neurosensory stimulation[J]. Physiological entomology, 2006, 31(3):270-277. doi: 10.1111/j.1365-3032.2006.00517.x URL | 
| [23] | 王保新, 杨桦, 杨伟,等. 云斑天牛对10种植物挥发物的EAG和行为反应[J]. 应用昆虫学报, 2014, 51(2):481-489. | 
| [24] | CHRISTIAN S, CARL R U, SURESH G,  et al. Styrene, (+)-trans-(1R,4S,5S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong electrophysiological responses in the bark beetle Ips typographus[J]. Journal of chemical ecology, 2019, 45(5-6):1-16. doi: 10.1007/s10886-018-1036-z URL | 
| [25] | ENNIS D, DESPLAND E, CHEN F,  et al. Spruce budworm feeding and oviposition are stimulated by monoterpenes in white spruce epicuticular waxes[J]. Insect science, 2017, 24(1):73-80. doi: 10.1111/1744-7917.12279 URL | 
| [26] | 马艳, 史黎央, 赵艺,等. 星天牛不同为害状态下山核桃挥发物成分的GC-EAD和行为反应[J]. 应用昆虫学报, 2019, 56(3):530-538. | 
| [27] | CAI X, LUO Z, MENG Z,  et al. Primary screening and application of repellent plant volatiles to control tea leafhopper, Empoasca onukii Matsuda[J]. Pest management science, 2020, 76(4):1304-1312. doi: 10.1002/ps.5641 URL | 
| [28] | 钱明惠, 黄咏槐, 黄泽翰,等. 星天牛对寄主植物枝叶浸提物的触角电位反应[J]. 环境昆虫学报, 2018, 40(3):690-694. | 
| [29] | 张冬勇, 柳建定, 王菊英,等. 两种对云斑天牛有林间诱捕效果的植物源物质[J]. 应用昆虫学报, 2016, 5(4):856-863. | 
| [30] | 刘伟, 刘杨, 王桂荣. 昆虫嗅觉可塑性研究进展[J]. 环境昆虫学报, 2018, 40(6):1201-1209. | 
| [31] | WU A, LI X, YAN X,  et al. Electroantennogram responses of Plutella xylostella (L.), to sex pheromone components and host plant volatile semiochemicals[J]. Journal of applied entomology, 2020, 144(5):396-406. doi: 10.1111/jen.12744 URL | 
| [32] | PAN H S, XIU C L, LIVY W,  et al. Plant volatiles modulate seasonal dynamics between hosts of the polyphagous mirid bug Apolygus lucorum[J]. Journal of chemical ecology, 2021, 47(11409-11410):87-98. doi: 10.1007/s10886-020-01236-9 URL | 
| [33] | LI X, ZHANG X, XIAO C,  et al. Behavioral responses of potato tuber moth (Phthorimaea operculella) to tobacco plant volatiles[J]. Journal of integrative agriculture, 2020, 19(2):325-332. doi: 10.1016/S2095-3119(19)62663-8 URL | 
| [34] | 钟永志, 谢明惠, 林璐璐,等. 草地贪夜蛾对氧化芳樟醇的趋性[J]. 植物保护, 2020, 46(4):178-180+222. | 
| [35] | BINYAMEEN M, HUSSAIN A, YOUSEFI F,  et al. Modulation of reproductive behaviors by non-host volatiles in the polyphagous Egyptian cotton leafworm, Spodoptera littoralis[J]. Journal of chemical ecology, 2013, 39(10):1273-1283. doi: 10.1007/s10886-013-0354-4 URL | 
| [36] | LI P Y, ZHU J W, QIN Y C. Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles[J]. Journal of economic entomology, 2012, 105(4):1149-1156. doi: 10.1603/EC11109 URL | 
| [37] | NOBORU M, EVGENIOS A, TOMOKI M,  et al. Ozone disrupts the communication between plants and insects in urban and suburban areas: an updated insight on plant volatiles[J]. Journal of Forestry Research, 2021, 32(4):1337-1349. doi: 10.1007/s11676-020-01287-4 URL | 
| [38] | LI T, BLANDE J D, HOLOPAINEN J K. Atmospheric transformation of plant volatiles disrupts host plant finding[J]. Scientific reports, 2016, 6(39):1-10. doi: 10.1038/s41598-016-0001-8 URL | 
| [39] | 徐伟, 毕嘉瑞, 刘梅,等. 杨背麦蛾(鳞翅目:麦蛾科)触角感器的超微结构[J]. 林业科学, 2019, 55(5):95-103. | 
| [40] | LIU F, LIU N. Using single sensillum recording to detect olfactory neuron responses of bed bugs to semiochemicals[J]. Journal of visualized experiments, 2016, 107(1):1-7. | 
| [41] | SYED Z, LEAL W S. Electrophysiological measurements from a moth olfactory system[J]. Journal of visualized experiments: jove, 2011(49):216-222. | 
| [42] | WANG C, LI G, MIAO C,  et al. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons[J]. Pest management science, 2020, 76(9):3159-3167. doi: 10.1002/ps.5870 URL | 
| [43] | 王璐. 基于SSR和EAG的麦长管蚜及其寄生性天敌的嗅觉反应研究[D]. 泰安: 山东农业大学, 2019. | 
| [44] | 刘伟, 王桂荣. 昆虫嗅觉中枢系统对外周信号的整合编码研究进展[J]. 昆虫学报, 2020, 63(12):1536-1545. | 
| [45] | GWANG H R, CHUNG G P, CHANG Y Y,  et al. Effect of (E4, Z6)-4,6-Hexadecadienal in attraction of Stathmopoda masinissa with its pheromone components of Korean population[J]. Journal of Asia-Pacific entomology, 2020, 23(2):306-309. doi: 10.1016/j.aspen.2020.02.003 URL | 
| [46] | SUK L W, HYUN W O, KYE C P. Antennal sensillum morphology and electrophysiological responses of olfactory receptor neurons in trichoid sensilla of the diamondback moth (Lepidoptera: Plutellidae)[J]. The florida entomologist, 2016, 99(1):146-158. | 
| [47] | 赵新成, 翟卿, 王桂荣. 昆虫触角叶的结构[J]. 昆虫学报, 2015, 58(2):190-209. | 
| [48] | BENGTSSON J M, WOLDE-HAWARIAT Y, KHBAISH H,  et al. Field attractants for Pachnoda interrupta selected by means of GC-EAD and single sensillum screening[J]. Journal of chemical ecology, 2009, 35(9):1063-1076. doi: 10.1007/s10886-009-9684-7 URL | 
| [49] | 马瑞燕, 杜家纬. 昆虫的触角感器[J]. 昆虫知识, 2000, 37(3):179-183. | 
| [50] | EZAKI K, YAMASHITA T, CARLE T,  et al. Aldehyde-specific responses of olfactory sensory neurons in the praying mantis[J]. Scientific reports, 2021, 11(1):1856. doi: 10.1038/s41598-021-81359-5 URL | 
| [51] | KYE C P, JUNG A H L, DAVID M S. Antennal olfactory sensory neurones responsive to host and nonhost plant volatiles in gorse pod moth Cydia succedana[J]. Physiological entomology, 2018, 43(2):86-99. doi: 10.1111/phen.12234 URL | 
| [52] | ANDERBRANT O, YUVARAJ J K, HGETVEIT L A,  et al. Electrophysiological responses of carrot psyllids (Trioza apicalis), in different phases of their life cycle, to volatile carrot and conifer compounds[J]. Journal of applied entomology, 2019, 144(4):236-240. doi: 10.1111/jen.12722 URL | 
| [53] | KYE C P, MARK R M, DAVID M S,  et al. Olfactory receptor neurons for plant volatiles and pheromone compounds in the lucerne weevil, Sitona discoideus[J]. Journal of chemical ecology, 2020, 46(3):250-263. doi: 10.1007/s10886-020-01160-y URL | 
| [54] | DAVID C, FRANKLIN N N, OLLE A, et al. Characterization of olfactory sensory neurons in the red clover seed weevil, Protapion trifolii (Coleoptera: Brentidae) and comparison to the closely related species P. fulvipes[J]. Journal of insect physiology, 2019, 119(11):1-11. | 
| [55] | 马百伟, 刘晓岚, 常亚军,等. 利用单感器记录与神经元示踪结合对棉铃虫主要性信息素感器内神经元投射的鉴定[J]. 昆虫学报, 2020, 63(4):413-420. | 
| [56] | FAN J, FRANCIS F, LIU Y, et al. An overview of odorant-binding protein functions in insect peripheral olfactory reception[J]. Genetics&molecular research, 2011, 10(4):3056-3069. | 
| [57] | 杜立啸, 刘杨, 王桂荣. 昆虫外周嗅觉系统信号转导机制研究进展[J]. 中国科学:生命科学, 2016, 46(5):573-583. | 
| [58] | 胡颖颖, 徐书法, Abebe J W,等. 昆虫嗅觉相关蛋白及嗅觉识别机理研究概述[J]. 基因组学与应用生物学, 2013, 32(5):667-676. | 
| [59] | 张瑜, 张胜男, 张媛媛,等. 昆虫嗅觉机制的研究进展[J]. 福建农业学报, 2016, 31(5):538-544. | 
| [60] | 任珍珍, 柳晓磊, 胡美英. 昆虫嗅觉相关蛋白的结构和功能[J]. 中国生物化学与分子生物学报, 2010, 26(6):531-537. | 
| [61] | SONG Y, SUN H, DU J. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans distant (Hemiptera: Lygaeidae)[J]. Scientific reports, 2018, 8(1):7803-7811. doi: 10.1038/s41598-018-26137-6 URL | 
| [62] | LI J, WANG X, ZHANG L. Identification of putative odorant binding proteins in the peach fruit borer Carposina sasakii Matsumura (Lepidoptera: Carposinidae) by transcriptome analysis and their expression profile[J]. Biochemical and biophysical research communications, 2018, 508(4):1024-1030. doi: 10.1016/j.bbrc.2018.12.007 URL | 
| [63] | ZHANG F, MERCHANT A, ZHAO Z,  et al. Characterization of MaltOBP1, a minus-C odorant-binding protein, from the Japanese pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae)[J]. Frontiers in physiology, 2020, 11:212. doi: 10.3389/fphys.2020.00212 URL | 
| [64] | ZHANG X, YAN Q, LI L L,  et al. Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides[J]. Pesticide biochemistry and physiology, 2020, 164(1):173-182. doi: 10.1016/j.pestbp.2020.01.012 URL | 
| [65] | WANG Z, GAO C, LIU J,  et al. Host plant odours and their recognition by the odourant-binding proteins of Diaphorina citri Kuwayama (Hemiptera: Psyllidae)[J]. Pest management science, 2020, 76(7):2453-2464. doi: 10.1002/ps.5786 URL | 
| [66] | JING D, ZHANG T, PRABU S,  et al. Molecular characterization and volatile binding properties of pheromone binding proteins and general odorant binding proteins in Conogethes pinicolalis (Lepidoptera: Crambidae)[J]. International journal of biological macromolecules, 2020, 146(3):263-271. doi: 10.1016/j.ijbiomac.2019.12.248 URL | 
| [67] | LIU H, DUAN H, WANG Q,  et al. Key amino residues determining binding activities of the odorant binding protein AlucOBP22 to two host plant terpenoids of Apolygus lucorum[J]. Journal of agricultural and food chemistry, 2019, 67(21):5949-5956. doi: 10.1021/acs.jafc.8b05975 URL | 
| [68] | DEXIAN L, CHUNBO L, DEGUANG L. Analyses of structural dynamics revealed flexible binding mechanism for the Agrilus mali odorant binding protein 8 towards plant volatiles[J]. Pest management science, 2020, 77(4):1642-1653. doi: 10.1002/ps.6184 URL | 
| [69] | 张玉, 杨斌, 王桂荣. 昆虫嗅觉相关可溶性蛋白的研究进展[J]. 环境昆虫学报, 2019, 41(2):229-240. | 
| [70] | 杜亚丽, 徐凯, 赵慧婷,等. 昆虫气味结合蛋白的研究进展[J]. 昆虫学报, 2020, 63(3):365-380. | 
| [71] | DU Y L, XU K, MA W H,  et al. Contact chemosensory genes identified in leg transcriptome of Apis cerana cerana (Hymenoptera: Apidae)[J]. J. econ. entomol, 2019, 112(5):2015-2029. doi: 10.1093/jee/toz130 URL | 
| [72] | LEAL W S. Odorant reception in insects: roles of receptors binding proteins, and degrading enzymes[J]. Annual review of entomology, 2013, 58(1):373-391. doi: 10.1146/annurev-ento-120811-153635 URL | 
| [73] | HULL J J, OMATHTHAGE P P, WANG M. Molecular cloning and comparative analysis of transcripts encoding chemosensory proteins from two plant bugs, Lygus lineolaris and Lygus hesperus[J]. Insect science, 2020, 27(3):404-424. doi: 10.1111/1744-7917.12656 URL | 
| [74] | YI X, QI J, ZHOU X,  et al. Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura[J]. Scientific reports, 2017, 7(1):296. doi: 10.1038/s41598-017-00403-5 URL | 
| [75] | LI X, DONG G, FANG J,  et al. Identification of putative olfactory genes in newly hatched larvae of a Coleopteran ectoparasitoid Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) by transcriptome analysis[J]. Entomological research, 2020, 50(7):329-342. doi: 10.1111/1748-5967.12436 URL | 
| [76] | ZHANG H, CHEN J L, LIN J H,  et al. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri[J]. Pest management science, 2020, 76(8): 2609-2618. doi: 10.1002/ps.5799 URL | 
| [77] | ZHOU S H, ZHANG J, ZHANG S G,  et al. Expression of chemosensory proteins in hairs on wings of Locusta migratoria (Orthoptera: Acrididae)[J]. Journal of applied entomology, 2008, 132(6): 439-450. doi: 10.1111/j.1439-0418.2007.01255.x URL | 
| [78] | LI F, YOUSSEF D, LI D,  et al. Functional and evolutionary characterization of chemosensory protein CSP2 in the whitefly, Bemisia tabaci[J]. Pest management science, 2021, 77(1):378-388. doi: 10.1002/ps.6027 URL | 
| [79] | LEAL W S, CHEN A M, ISHIDA Y,  et al. Kinetics and molecular properties of pheromone binding and release[J]. PNAS, 2005, 102(15):5386-5391. doi: 10.1073/pnas.0501447102 URL | 
| [80] | 莫建初, 王成盼, 尉吉乾. 昆虫外周嗅觉系统研究进展[J]. 江西农业大学学报, 2019, 41(01):50-57. | 
| [81] | 申思凡, 张真, 孔祥波,等. 昆虫气味受体研究技术及其在林业昆虫中的应用研究进展[J]. 林业科学, 2020, 56(5):150-159. | 
| [82] | 安兴奎. 绿盲蝽气味受体的鉴定表达及功能分析[D]. 北京: 中国农业科学院, 2019. | 
| [83] | 李彬, 张赛, 王晨蕊,等. 绿盲蝽八个普通气味受体基因的克隆及功能鉴定[J]. 昆虫学报, 2020, 63(9):1048-1058. | 
| [84] | 张坤朋. 粘虫嗅觉相关基因的表达模式及MsepOR13功能研究[D]. 杨陵: 西北农林科技大学, 2019. | 
| [85] | WANG X, WANG S, YI J,  et al. Three host plant volatiles, hexanal, lauric acid, and tetradecane, are detected by an antenna-biased expressed odorant receptor 27 in the dark black chafer Holotrichia parallela[J]. Journal of agricultural and food chemistry, 2020, 68(28):7316-7323. doi: 10.1021/acs.jafc.0c00333 URL | 
| [86] | WEN M, LI E, CHEN Q,  et al. A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae)[J]. Journal of insect physiology, 2019, 118(9): 103941. doi: 10.1016/j.jinsphys.2019.103941 URL | 
| [87] | VOGT R G, NATALIE E M, RACLIHEL L,  et al. The insect SNMP gene family[J]. Insect biochemistry and molecular biology, 2009, 39(7):448-456. doi: 10.1016/j.ibmb.2009.03.007 URL | 
| [88] | LIU S, QIAO F, LIANG Q M,  et al. Molecular characterization of two sensory neuron membrane proteins from Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Annals of the entomological society of America, 2013, 106(3):378-384. doi: 10.1603/AN12099 URL | 
| [89] | PREGITZER P, GRESCHISTA M, BREER H,  et al. The sensory neurone membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system[J]. Insect molecular biology, 2014, 23(6):733-742. doi: 10.1111/imb.12119 URL | 
| [90] | RONDEROS D S, LIN C C, POTTER C J,  et al. Farnesol-detecting olfactory neurons in Drosophila[J]. Journal of neuroscience, 2014, 34(11):3959-3968. doi: 10.1523/JNEUROSCI.4582-13.2014 URL | 
| [91] | PREGITZER P, JIANG X, LEMKE R S,  et al. A subset of odorant receptors from the desert locust Schistocerca gregaria is co-expressed with the sensory neuron membrane protein 1[J]. Insects, 2019, 10(10):350. doi: 10.3390/insects10100350 URL | 
| [92] | XU W, ZHANG H, LIAO Y,  et al. Characterization of sensory neuron membrane proteins (SNMPs) in cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. Insect science, 2020, 28(3):769-779. doi: 10.1111/1744-7917.12816 URL | 
| [93] | YANG H, NING S, SUN X, et al. Identification and characterization of two sensory neuron membrane proteins from Onion maggot (Diptera: Anthomyiidae)[J]. Journal of economic entomology, 2020, 113(1):418-426. | 
| [94] | ZHANG H J, XU W, CHEN Q,  et al. A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera[J]. Insect biochemistry and molecular biology, 2020, 118(3):103313. doi: 10.1016/j.ibmb.2020.103313 URL | 
| [95] | CASSAU S, KRIEGER J. The role of SNMPs in insect olfaction[J]. Cell tissue res, 2021, 383(1): 21-33. doi: 10.1007/s00441-020-03336-0 URL | 
| [96] | 任炳忠, 雒雯琦, 张雪,等. 昆虫嗅觉通讯研究概述与展望[J]. 吉林农业大学学报, 2017, 39(3):253-261. | 
| [97] | 张秀歌, 李祥, 孙小旭,等. 植物挥发物对蛾类昆虫性信息素的影响[J]. 应用昆虫学报, 2015, 52(6):1333-1344. | 
| [98] | JETSKE G B, PETRA J H, DAAN H,  et al. Do plant volatiles confuse rather than guide foraging behavior of the aphid hyperparasitoid Dendrocerus aphidum[J]. Chemoecology, 2020, 30(3):315-325. doi: 10.1007/s00049-020-00321-5 URL | 
| [99] | RENOU M, ANTON S. Insect olfactory communication in a complex and changing world[J]. Current opinion in insect science, 2020, 42(12):1-7. doi: 10.1016/j.cois.2020.04.004 URL | 
| [100] | POPE T W, CAMPBELL C A M, HARDIE J,  et al. Interactions between host-plant volatiles and the sex pheromones of the bird cherry-oat aphid, Rhopalosiphum padi and the damson-hop aphid, Phorodon humuli[J]. Journal of chemical ecology, 2007, 33(1):157-165. doi: 10.1007/s10886-006-9199-4 URL | 
| [101] | JACTEL H, BIRGERSSON G, ANDERSSON S,  et al. Non-host volatiles mediate associational resistance to the pine processionary moth[J]. Oecologia, 2011, 166(3):703-711. doi: 10.1007/s00442-011-1918-z URL | 
| [102] | XU H, TED C J T. Plant volatiles as mate-finding cues for insects[J]. Trends in plant science, 2018, 23(2):100-111. doi: 10.1016/j.tplants.2017.11.004 URL | 
| [103] | LU Y, YAO Y, ZHANG Q,  et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes[J]. Biosensors and bioelectronics, 2015, 67(5):662-669. doi: 10.1016/j.bios.2014.09.098 URL | 
| [1] | . Sex pheromone in Proagopertha lucidula (Faldermann) (Coleoptera: Scarabaeidae): olfactory behaviour and temporal pattern of emission [J]. Chinese Agricultural Science Bulletin, 2010, 26(19): 258-262. | 
| [2] | Wu Houzhang, Zhang Chao , Li Zhengshan, Zhou Chunxiao, Zou Yunding. Bottom-up Effect of the Tritrophic System Interactions Among Host Plants, Phytophagous Insects and Natural Enemies [J]. Chinese Agricultural Science Bulletin, 2006, 22(8): 414-414. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
