Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (36): 148-154.doi: 10.11924/j.issn.1000-6850.casb2021-0822
Previous Articles Next Articles
WANG Dongpeng(), YE Cheng(
), LIAO Xiaoli
Received:
2021-08-25
Revised:
2021-10-26
Online:
2021-12-25
Published:
2022-02-15
Contact:
YE Cheng
E-mail:1808124001@qq.com;yechenghust@163.com
CLC Number:
WANG Dongpeng, YE Cheng, LIAO Xiaoli. Application of Microfluidic Chip in Agricultural Products Safety Detection[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 148-154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0822
[1] |
FRANK C, WERBER D, CRAMER J P, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany[J]. The new England journal of medicine, 2011, 365(19):1771-1780.
doi: 10.1056/NEJMoa1106483 URL |
[2] |
WERBER D, KRAUSE G, FRANK C, et al. Outbreaks of virulent diarrheagenic Escherichia coli-are we in control[J]. BMC Medicine, 2012, 10:11.
doi: 10.1186/1741-7015-10-11 URL |
[3] |
YANG S C, LIN C H, ALJUFFALI I A, et al. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development[J]. Arch Microbiol, 2017, 199(6):811-825.
doi: 10.1007/s00203-017-1393-y URL |
[4] |
LAM H M, REMAIS J, FUNG M C, et al. Food supply and food safety issues in China[J]. Lancet, 2013, 381(9882):2044-2053.
doi: 10.1016/S0140-6736(13)60776-X URL |
[5] |
ASSELT E D, FELS-KLERX H J, BREUER O, et al. Food Safety Crisis Management-A Comparison between Germany and the Netherlands[J]. Journal of food science, 2017, 82(2):477-483.
doi: 10.1111/jfds.2017.82.issue-2 URL |
[6] |
XIONG Z, SUN D W, PU H, et al. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review[J]. Critical reviews in food science and nutrition, 2017, 57(4):755-768.
doi: 10.1080/10408398.2014.954282 URL |
[7] | 朱婧旸, 董旭华, 张维宜, 等. 微流控技术在食品安全快速检测中的应用[J]. 化学试剂, 2021, 43(5):632-639. |
[8] |
GARCIA-CANAS V, SIMO C, HERRERO M, et al. Present and future challenges in food analysis: foodomics[J]. Analytical chemistry, 2012, 84(23):10150-10159.
doi: 10.1021/ac301680q URL |
[9] |
HENDRICKSON O D, ZVEREVA E A, POPRAVKO D S, et al. An immunochromatographic test system for the determination of lincomycin in foodstuffs of animal origin[J]. J chromatogr b analyt technol biomed life science, 2020, 1141:122014.
doi: 10.1016/j.jchromb.2020.122014 URL |
[10] |
SUN D, QIU N, ZHOU S, et al. Development of sensitive and reliable UPLC-MS/MS methods for food analysis of emerging mycotoxins in China total diet study[J]. Toxins (Basel), 2019, 11(3):166.
doi: 10.3390/toxins11030166 URL |
[11] |
KORBAN A, CHARAPITSA S, CABALA R, et al. Advanced GC-MS method for quality and safety control of alcoholic products[J]. Food chemistry, 2021, 338:128107.
doi: 10.1016/j.foodchem.2020.128107 URL |
[12] | 朱小梅, 王丹. 色谱质谱技术在食品安全分析检测中的应用[J]. 食品安全导刊, 2019(12):56. |
[13] |
ZHANG J, YAN S, YUAN D, et al. Fundamentals and applications of inertial microfluidics: a review[J]. Lab on a chip, 2016, 16(1):10-34.
doi: 10.1039/C5LC01159K URL |
[14] |
SAMIEI E, TABRIZIAN M, HOORFAR M. A review of digital microfluidics as portable platforms for lab-on a-chip applications[J]. Lab on a chip, 2016, 16(13):2376-2396.
doi: 10.1039/C6LC00387G URL |
[15] | 范一强, 王洪亮, 高克鑫, 等. 模块化微流控系统与应用[J]. 分析化学, 2018, 46(12):1863-1871. |
[16] | 孙薇, 陆敏, 李立, 等. 微流控芯片技术应用进展[J]. 中国国境卫生检疫杂志, 2019, 42(03):221-224. |
[17] |
GU T, YEAP E W, SOMASUNDAR A, et al. Droplet microfluidics with a nanoemulsion continuous phase[J]. Lab on a chip, 2016, 16(14):2694-2700.
doi: 10.1039/C6LC00601A URL |
[18] |
ARAUJO F, SHRESTHA N, SHAHBAZI M A, et al. Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs[J]. ACS Nano, 2015, 9(8):8291-8302.
doi: 10.1021/acsnano.5b02762 URL |
[19] | 李美芬, 李丽蓉, 刘入源. 纸基微流控芯片技术在食品安全检测中的应用[J]. 食品安全质量检测学报, 2018, 9(10):2395-2399. |
[20] | 李泽娴. 基于纸基微流控芯片检测水果中葡萄糖、果糖和维生素C的应用研究[D]. 上海:上海海洋大学, 2017. |
[21] | 李泽娴, 朱永恒, 赵勇, 等. 功能化纸基微流控芯片快速测定水果中葡萄糖的研究[A]. 中国食品科学技术学会. 中国食品科学技术学会第十二届年会暨第八届中美食品业高层论坛论文摘要集[C]. 北京:中国食品科学技术学会, 2015:354-355. |
[22] | LAWRENCE C S K, TAN S N, FLORESCA C Z. A “green” cellulose paper based glucose amperometric biosensor[J]. Sensors & actuators: b. chemical, 2014, 193:536-541. |
[23] |
HAO Z, ZHENG Q, JIN L, et al. Rapid measurement of total polyphenol content in tea by kinetic matching approach on microfluidic paper-based analytical devices[J]. Food chemistry, 2021, 342:128368.
doi: 10.1016/j.foodchem.2020.128368 URL |
[24] | 栀夏. 浅析我国啤酒市场发展现状[J]. 标签技术, 2019(04):20-22. |
[25] |
CINTI S, BASSO M, MOSCONE D, et al. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers[J]. Analytica chimica acta, 2017, 960:123-130.
doi: 10.1016/j.aca.2017.01.010 URL |
[26] | 玄翠娟. 新型纸基微流控分析方法及应用研究[D]. 西安:西北大学, 2015. |
[27] |
HU X, LU L, FANG C, et al. Determination of apparent amylose content in rice by using paper-based microfluidic Chips[J]. Journal of agricultural and food chemistry, 2015, 63(44):9863-9868.
doi: 10.1021/acs.jafc.5b04530 URL |
[28] | 吴阳博, 王超, 牛彦麟, 等. 2016年北京市食源性疾病暴发事件流行病学特征分析[J]. 中国预防医学杂志, 2018, 19(8):561-563. |
[29] | 赵倩倩. 中国主要粮食作物农药使用现状及问题研究[D]. 北京:北京理工大学, 2015. |
[30] | 庄众, 郭云昌, 杨淑香, 等. 2002—2017年中国食源性农药中毒事件分析[J]. 中国食品卫生杂志, 2021, 33(3):373-378. |
[31] | 何琳, 王玉琼, 阴旅宁, 等. 2006—2015年四川省农药中毒流行特征分析[J]. 现代预防医学, 2017, 44(8):1377-1380,1386. |
[32] | 杨脉, 我国农产品质量安全检验检测体系的现状与对策[J]. 湖北农机化, 2020(1):10. |
[33] | 赵君, 探讨有机磷农药中毒及解救[J]. 世界最新医学信息文摘, 2018, 18(35):175-179. |
[34] |
WANG J, SATAKE T, SUZUKI H. Microfluidic device for coulometric detection of organophosphate pesticides[J]. Analytical sciences: the international journal of the japan society for analytical chemistry, 2015, 31(7):591-5.
doi: 10.2116/analsci.31.591 URL |
[35] |
LUAN E, ZHENG Z, LI X, et al. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides[J]. Analytica chimica acta, 2016, 916:77-83.
doi: 10.1016/j.aca.2016.02.019 URL |
[36] |
MIAO S S, WU M S, MA L Y, et al. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode[J]. Talanta, 2016, 158:142-151.
doi: 10.1016/j.talanta.2016.05.030 URL |
[37] |
LI H, GUO J, PING H, et al. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe[J]. Talanta, 2011, 87:93-99.
doi: 10.1016/j.talanta.2011.09.046 URL |
[38] | 么亚男, 徐斐, 曹慧, 等. 纳米金比色法快速检测啶虫脒[J]. 分析试验室, 2019, 38(7):797-800. |
[39] |
LIU G, LIN Y. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents[J]. Analytical chemistry, 2006, 78(3):835-843.
doi: 10.1021/ac051559q URL |
[40] |
HU T, XU J, YE Y, et al. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor[J]. Biosensors & bioelectronics, 2019, 136:112-117.
doi: 10.1016/j.bios.2019.04.036 URL |
[41] | 施杰, 农药检测纸质微流控系统设计与试验研究[D]. 镇江:江苏大学, 2016. |
[42] |
LIU W, KOU J, XING H, et al. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables[J]. Biosensors & bioelectronics, 2014, 52:76-81.
doi: 10.1016/j.bios.2013.08.024 URL |
[43] |
WEI X, GAO X, ZHAO L, et al. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips[J]. Journal of chromatography. A, 2013, 1281:148-154.
doi: 10.1016/j.chroma.2013.01.039 URL |
[44] | 杨宁, 李振, 毛罕平, 等. 基于纸基微流控芯片的农药残留光电检测方法[J]. 农业工程学报, 2017, 33(3):294-299. |
[45] |
JIN L, HAO Z, ZHENG Q, et al. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food[J]. Analytica chimica acta, 2020, 1100:215-224.
doi: 10.1016/j.aca.2019.11.067 URL |
[46] |
LEE K S, PARK S H, WON S Y, et al. Electrophoretic total analysis of trace tetracycline antibiotics in a microchip with amperometry[J]. Electrophoresis, 2009, 30(18):3219-3227.
doi: 10.1002/elps.v30:18 URL |
[47] | 王英. 肉类食品中兽药残留的原因及对策[J]. 食品安全导刊, 2021(18):18,20. |
[48] | TANG M, ZHAO Y, CHEN J, et al. On-line multi-residue analysis of fluoroquinolones and amantadine based on an integrated microfluidic chip coupled to triple quadrupole mass spectrometry[J]. Analytical methods: advancing methods and applications, 2020, 12(44):5322-5331. |
[49] |
ZHAO Y, TANG M, LIU F, et al. Highly integrated microfluidic chip coupled to mass spectrometry for online analysis of residual quinolones in milk[J]. Analytical chemistry, 2019, 91(21):13418-13426.
doi: 10.1021/acs.analchem.9b01844 URL |
[50] | HE S, XIE W, ZHANG W, et al. Multivariate qualitative analysis of banned additives in food safety using surface enhanced raman scattering spectroscopy[J]. Spectrochimica acta.(Part A, Molecular and biomolecular spectroscopy), 2015, 137:1092-1099. |
[51] | TRENTANNI HANSEN G J, ALMONACID J, ALBERTENGO L, et al. NIR-based Sudan I to IV and para-red food adulterants screening[J]. Food additives & contaminants. part a, chemistry, analysis, control, exposure & risk assessment, 2019, 36(8):1163-1172. |
[52] |
FONOVICH T M. Sudan dyes: are they dangerous for human health[J]. Drug and chemical toxicology, 2013, 36(3):343-352.
doi: 10.3109/01480545.2012.710626 URL |
[53] |
LIU Y, YU J, DU M, et al. Accelerating microfluidic immunoassays on filter membranes by applying vacuum[J]. Biomedical microdevices, 2012, 14(1):17-23.
doi: 10.1007/s10544-011-9581-z URL |
[54] | WU M, LI P, ZHU Q, et al. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine[J]. Spectrochimica acta (part a, molecular and biomolecular spectroscopy), 2018, 196:110-116. |
[55] | 伏超, 李志成. 食品添加剂亚硝酸盐(硝酸盐)中毒事件分析及对策研究[J]. 食品安全导刊, 2021(12):38,41. |
[56] | 赵联朝, 闫宏涛. 纸基过氯乙烯树脂微流控亚硝酸根离子检测片的研制[J]. 化学学报, 2012, 70(9):1104-1108. |
[57] | 肖良品, 刘显明, 刘启顺, 等. 用于亚硝酸盐快速检测的三维纸质微流控芯片的制作[J]. 食品科学, 2013, 34(22):341-345. |
[58] |
GU Z, WU M L, YAN B Y, et al. Integrated digital microfluidic platform for colorimetric sensing of nitrite[J]. ACS omega, 2020, 5(19):11196-11201.
doi: 10.1021/acsomega.0c01274 URL |
[59] |
LIU C C, WANG Y N, FU L M, et al. Microfluidic paper-based chip platform for benzoic acid detection in food[J]. Food chemistry, 2018, 249:162-167.
doi: 10.1016/j.foodchem.2018.01.004 URL |
[60] | ONAKPA M M, NJAN A A, KALU O C. A review of heavy metal contamination of food crops in nigeria[J]. Ann Glob Health, 2018, 84(3):488-494 |
[61] | 熊欣欣, 田杰, 束会娟, 等. 重金属中毒影响脑内神经发生的研究进展[J]. 华中科技大学学报(医学版), 2020, 49(1):102-105. |
[62] |
KIM S W, HAN S J, KIM Y, et al. Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea[J]. PLoS one, 2019, 14(3):e0212410.
doi: 10.1371/journal.pone.0212410 URL |
[63] |
PARK M, HA H D, KIM Y T, et al. Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection[J]. Analytical chemistry, 2015, 87(21):10969-10975.
doi: 10.1021/acs.analchem.5b02907 URL |
[64] | HONG Y, WU M, CHEN G, et al. 3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for real-time determination of heavy metal ions[J]. ACS applied materials & interfaces, 2016, 8(48):32940-32947. |
[65] |
ZHANG Y, ZUO P, YE B C. A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food[J]. Biosensors & bioelectronics, 2015, 68:14-19.
doi: 10.1016/j.bios.2014.12.042 URL |
[66] |
CHEN X, WANG J, SHEN H Y, et al. Microfluidic chip for multiplex detection of trace chemical contaminants based on magnetic encoded aptamer probes and multibranched DNA nanostructures as signal tags[J]. ACS sensors, 2019, 4(8):2131-2139.
doi: 10.1021/acssensors.9b00963 URL |
[67] |
CHEN X, HONG F, ZHANG W, et al. Microchip electrophoresis based multiplexed assay for silver and mercury ions simultaneous detection in complex samples using a stirring bar modified with encoded hairpin probes for specific extraction[J]. Journal of chromatography. A, 2019, 1589:173-181.
doi: 10.1016/j.chroma.2019.01.004 URL |
[68] | 王欣然, 李博伟, 尤慧艳, 等. 基于量子点的荧光传感微流纸基芯片离子印迹法检测铜离子[J]. 分析化学, 2015, 43(10):1499-1504. |
[69] |
JAYAWARDANE B M, COO L, CATTRALL R W, et al. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II)[J]. Analytica chimica acta, 2013, 803:106-112.
doi: 10.1016/j.aca.2013.07.029 URL |
[1] | LI Xiaoyu. Cultivation and Product Analysis of Pleurotus eryngii on Phragmites australis Substrates [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 51-55. |
[2] | SUN Yangcun, YIN Ziliang, GE Jingping. Accumulation of Heavy Metal Pollutants in Soil: Sources and Treatment Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 75-79. |
[3] | ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58. |
[4] | CHU Xiangqian, LI Hongna, LV Weiguang, ZHENG Xianqing, LI Shuangxi, ZHANG Juanqin, WANG Quanhua, ZHANG Hanlin. Nutrients and Heavy Metals in Sediments and Substrate of Shuifeng Lake Basin: Investigation and Evaluation [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 72-78. |
[5] | LU Zhenping, TIAN Ying. Current Situation and Removal Methods of Pesticide Residues in Vegetables and Fruits in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 131-137. |
[6] | LIU Lilan, QIU Qinqin, FAN Wenrong, TANG Jiao, HU Xiaobing, XIAO Wei, CHEN Ke. The Removal Process of Organophosphorus Pesticide Residues on the Surface of Commercial Fruits by Alkaline Electrolyzed Water [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 133-140. |
[7] | XU Lei, HUANG Jiazhong, ZHANG Ya, XIANG Jingwei, YE Lei, YANG Minglong, DUAN Xingwu, GUAN Jiyun. Sources and Influencing Factors of Soil Heavy Metals in the High Mountain and Hilly Area of Central Yunnan: Taking Wuding County as an Example [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 82-92. |
[8] | Chen Feng, Meng Shunlong, Chen Jiazhang. Pollution Status of Pesticides in Water-Sediment-Organisms: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 159-164. |
[9] | Liu Xiaolan, Wei Fuxiao, Wang Daoping, Zhang Qinghai, Lin Shaoxia, Pan Weidong, Wang Ruoyan. Pollution Characteristics and Potential Risk Assessment of Heavy Metals in Tea Garden Soil Treated with Soil Conditioning Powder [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 108-115. |
[10] | Guo Siyi, Sun Mingna, Dong Xu, Chu Yue, Tong Zhou, Wang Mei, Gao Tongchun, Duan Jinsheng. Application and Research Progress of Immunoassay Technology in Rapid Detection of Pesticide Residues [J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 106-112. |
[11] | Li Jianzhao, Gao Wanchao, Li Xian, Liu Pei, Jiang Bin, Tong Chunyi. Effects of Nano Selenium and Chitosan Compounds on Lettuce Planted in Cadmium-contaminated Soils [J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 113-117. |
[12] | Wang Yan, Peng Qiang, Zhao Xiaoming, Yin Heng. Pesticide Residues Biodegradation: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 117-124. |
[13] | Ji Li, Shao Wenqi, Chen Fuping, Dong Qingjun, Zhang Ankang. Effects of Successive Years of Rice-duck Co-cultivation on Soil Properties, Rice Yield and Quality in Paddy Field [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 1-7. |
[14] | Ni Gang, Hu Chengxiao, Li Changyin, Cai Miaomiao, Zhao Xiaohu. The Interaction of Selenium and Heavy Metals in Rhizosphere Soil: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 78-83. |
[15] | . Removal of Heavy Metal From Livestock Manure Using Electroreduction Method [J]. Chinese Agricultural Science Bulletin, 2019, 35(8): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||