[1] |
CHACHAR S, CHACHAR M, RIAZ A, et al. Epigenetic modification for horticultural plant improvement comes of age[J]. Scientia horticulturae, 2022, 292:110633.
|
[2] |
ZHU T, XIA C, YU R, et al. Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits[J]. Nature communications, 2024, 15(1):6562.
doi: 10.1038/s41467-024-50787-y
pmid: 39095348
|
[3] |
ZHANG H, ZHU J K. Epigenetic gene regulation in plants and its potential applications in crop improvement[J]. Nature reviews molecular cell biology, 2025, 26(1):51-67.
|
[4] |
宋显伟, 唐善杰, 曹晓风. 表观遗传调控与作物育种[J]. 中国农业科技导报, 2022, 24(12):33-38.
doi: 10.13304/j.nykjdb.2022.1040
|
[5] |
LLOYD J P, LISTER R. Epigenome plasticity in plants[J]. Nature reviews genetics, 2022, 23(1):55-68.
|
[6] |
XUE Y, CAO X, CHEN X, et al. Epigenetics in the modern era of crop improvements[J]. Science China life sciences, 2025, 68(6):1570.
|
[7] |
YANG L, ZHANG P, WANG Y, et al. Plant synthetic epigenomic engineering for crop improvement[J]. Science China life sciences, 2022, 65(11):2191-2204.
|
[8] |
XIONG W, REYNOLDS M, XU Y. Climate change challenges plant breeding[J]. Current opinion in plant biology, 2022, 70:102308.
|
[9] |
DALAKOURAS A, VLACHOSTERGIOS D. Epigenetic approaches to crop breeding: current status and perspectives[J]. Journal of experimental botany, 2021, 72(15):5356-5371.
|
[10] |
张道磊, 甘雨军, 乐亮, 等. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8):31-42.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0378
|
[11] |
YU A, LEPERE G, JAY F, et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense[J]. Proceedings of the national academy of sciences, 2013, 110(6):2389-2394.
|
[67] |
FAL K, EL KHOURY S, LE MASSON M, et al. CRISPR/dCas9-targeted H3K27me3 demethylation at the CUC3 boundary gene triggers ectopic transcription and impacts plant development[J]. iScience, 2025, 28(5):112475.
|
[68] |
SONG X, TANG S, LIU H, et al. Inheritance of acquired adaptive cold tolerance in rice through DNA methylation[J/OL]. Cell, 2025, https://www.cell.com/cell/fulltext/S0092-8674(25)00506-9.
|
[69] |
TANG S, YANG C, WANG D, et al. Targeted DNA demethylation produces heritable epialleles in rice[J]. Science China life sciences, 2022, 65(4):753-756.
|
[12] |
LEI M, ZHANG H, JULIAN R, et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis[J]. Proceedings of the national academy of sciences, 2015, 112(11):3553-3557.
|
[13] |
LANG Z, WANG Y, TANG K, et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit[J]. Proceedings of the national academy of sciences, 2017, 114(22):E4511-E4519.
|
[14] |
SONG X, CAO X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice[J]. Current opinion in plant biology, 2017, 36:111-118.
doi: S1369-5266(16)30182-0
pmid: 28273484
|
[15] |
ROWLEY M J, ROTHI M H, BOHMDORFER G, et al. Long-range control of gene expression via RNA-directed DNA methylation[J]. Plos genetics, 2017, 13(5):e1006749.
|
[16] |
ZHANG X, YAZAKI J, SUNDARESAN A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6):1189-1201.
|
[17] |
LISTER R, O'MALLEY R C, TONTI-FILIPPINI J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis[J]. Cell, 2008, 133(3):523-536.
|
[18] |
BARTELS A, HAN Q, NAIR P, et al. Dynamic DNA methylation in plant growth and development[J]. International journal of molecular sciences, 2018, 19(7):1-17.
|
[19] |
HE L, HUANG H, BRADAI M, et al. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development[J]. Nature communications, 2022, 13(1):1335.
|
[20] |
JENUWEIN T, ALLIS C D. Translating the histone code[J]. Science, 2001, 293(5532):1074-1080.
doi: 10.1126/science.1063127
pmid: 11498575
|
[21] |
LIU C, LU F, CUI X, et al. Histone methylation in higher plants[J]. Annual review of plant biology, 2010, 61:395-420.
doi: 10.1146/annurev.arplant.043008.091939
pmid: 20192747
|
[22] |
ZHANG Y, SUN Z, JIA J, et al. Overview of histone modification[J]. Advances in experimental medicine and biology, 2021, 1283:1-16.
doi: 10.1007/978-981-15-8104-5_1
pmid: 33155134
|
[23] |
GANDHIVEL V H S, SOTELO-PARRILLA P, RAJU S, et al. An Oryza-specific histone H4 variant predisposes H4 lysine 5 acetylation to modulate salt stress responses[J]. Nature plants, 2025, 11(4):790-807.
|
[24] |
GE L H, PAN F A, JIA M X, et al. RNA modifications in plant biotic interactions[J]. Plant communications, 2025, 6(2):101232.
|
[25] |
LEE K P, LIU K, KIM E Y, et al. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis[J]. The plant cell, 2024, 36(3):746-763.
|
[26] |
SOTELO-SILVEIRA M, CHAVEZ MONTES R A, SOTELO-SILVEIRA J R, et al. Entering the next dimension: plant genomes in 3D[J]. Trends in plant science, 2018, 23(7):598-612.
|
[27] |
ZHENG H, XIE W. The role of 3D genome organization in development and cell differentiation[J]. Nature reviews molecular cell biology, 2019, 20(9):535-550.
doi: 10.1038/s41580-019-0132-4
pmid: 31197269
|
[28] |
张红娜, 王灿. 长链非编码RNA在园艺植物中的研究进展[J]. 广东农业科学, 2023, 50(7):11-25.
|
[29] |
CHEN C, HU Y, IKEUCHI M, et al. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications[J]. Science China life sciences, 2024, 67(7):1338-1367.
|
[30] |
LI J, ZHANG Q, WANG Z, et al. The roles of epigenetic regulators in plant regeneration: exploring patterns amidst complex conditions[J]. Plant physiology, 2024, 194(4):2022-2038.
doi: 10.1093/plphys/kiae042
pmid: 38290051
|
[31] |
PENG J, ZHANG Q, TANG L P, et al. LEC2 induces somatic cell reprogramming through epigenetic activation of plant cell totipotency regulators[J]. Nature communications, 2025, 16(1):1-17.
|
[32] |
ZHU K H, CHEN J C, ZHAO L, et al. Dynamic control of H2A. Zub and H3K27me3 by ambient temperature during cell fate determination in Arabidopsis[J/OL]. Developmental cell, 2025, https://www.sciencedirect.com/science/article/abs/pii/S1534580725002047.
|
[33] |
PAN W, LI J, DU Y, et al. Epigenetic silencing of callose synthase by VIL1 promotes bud-growth transition in lily bulbs[J]. Nature plants, 2023, 9(9):1451-1467.
doi: 10.1038/s41477-023-01492-z
pmid: 37563458
|
[34] |
ZHENG B, LIU J, GAO A, et al. Epigenetic reprogramming of H3K27me3 and DNA methylation during leaf-to-callus transition in peach[J]. Horticulture research, 2022,9:uhac132.
|
[35] |
BARRERA-ROJAS C H, VICENTE M H, PINHEIRO BRITO D A, et al. Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b[J]. Journal of experimental botany, 2023, 74(17):5124-5139.
|
[36] |
LI Y, GAO R, ZHANG J, et al. The biochemical and molecular investigation of flower color and scent sheds lights on further genetic modification of ornamental traits in Clivia miniata[J]. Horticulture research, 2022,9:uhac114.
|
[37] |
GUERRERO-BOSAGNA C. From epigenotype to new genotypes: relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty[J]. Seminars in cell & developmental biology, 2020, 97:86-92.
|
[38] |
GROTEWOLD E. The genetics and biochemistry of floral pigments[J]. Annual review of plant biology, 2006, 57(1):761-780.
|
[39] |
TANG M, XUE W, LI X, et al. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in chrysanthemum[J]. New phytologist, 2022, 236(3):1075-1088.
|
[40] |
LI X, BU F, ZHANG M, et al. Enhancing nature's palette through the epigenetic breeding of flower color in chrysanthemum[J]. New phytologist, 2025, 245(5):2117-2132.
doi: 10.1111/nph.20347
pmid: 39721988
|
[41] |
LU J, WANG W, FAN C, et al. Telo boxes within the AGAMOUS second intron recruit histone 3 lysine 27 methylation to increase petal number in rose (Rosa chinensis) in response to low temperatures[J]. The plant journal, 2024, 118(5):1486-1499.
doi: 10.1111/tpj.16691
pmid: 38457289
|
[42] |
LIANG M, CHEN W, LAFOUNTAIN A M, et al. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers[J]. Science, 2023, 379(6632):576-582.
doi: 10.1126/science.adf1323
pmid: 36758083
|
[43] |
KANG D, KHAN M A, SONG P, et al. Comparative analysis of the chrysanthemum transcriptome with DNA methylation inhibitors treatment and silencing MET1 lines[J]. BMC plant biology, 2023, 23(1):47.
doi: 10.1186/s12870-023-04036-x
pmid: 36670371
|
[44] |
HOU X, SHI M, ZHANG Z, et al. DNA demethylation is involved in nitric oxide-induced flowering in tomato[J]. Journal of integrative agriculture, 2025, 24(5):1769-1785.
doi: 10.1016/j.jia.2024.09.037
|
[45] |
WEI Q, MA C, XU Y, et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nature communications, 2017, 8(1):829.
doi: 10.1038/s41467-017-00812-0
pmid: 29018260
|
[46] |
SUN X, WANG M, LENG X, et al. Characterization of the regulation mechanism of grapevine microRNA172 family members during flower development[J]. BMC plant biology, 2020, 20:1-12.
|
[47] |
ZHONG S, FEI Z, CHEN Y R, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening[J]. Nature biotechnology, 2013, 31(2):154-159.
doi: 10.1038/nbt.2462
pmid: 23354102
|
[48] |
SONG B, YU J, LI X, et al. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement[J]. Genome biology, 2024, 25(1):87.
doi: 10.1186/s13059-024-03220-y
pmid: 38581061
|
[49] |
YU H, ZHANG C, LU C, et al. The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development[J]. Horticulture research, 2024, 11(3):uhae005.
|
[50] |
HUANG H, LIU R, NIU Q, et al. Global increase in DNA methylation during orange fruit development and ripening[J]. Proceedings of the national academy of sciences, 2019, 116(4):1430-1436.
|
[51] |
MA L, ZUO J, BAI C, et al. The dynamic N1‐methyladenosine RNA methylation provides insights into the tomato fruit ripening[J]. The plant journal, 2024, 120(5):2014-2030.
|
[52] |
ZHOU L, TANG R, LI X, et al. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner[J]. Genome biology, 2021, 22(1):168.
|
[53] |
YANG Y, HUANG Y, WANG T, et al. mRNA m6A regulates gene expression via H3K4me3 shift in 5’UTR[J]. Genome biology, 2025, 26(1):54.
|
[54] |
FENG S, JIANG X, HUANG Z, et al. DNA methylation remodeled amino acids biosynthesis regulates flower senescence in carnation (Dianthus caryophyllus)[J]. New phytologist, 2024, 241(4):1605-1620.
doi: 10.1111/nph.19499
pmid: 38179647
|
[55] |
JIA H, SU Z, REN Y, et al. Exploration of 5-azacytidine and trichostatin A in the modulation of postharvest quality of 'Shine Muscat' grape berries[J]. Postharvest biology and technology, 2024, 209:112719.
|
[56] |
ZHOU L, GAO G, LI X, et al. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato[J]. Plant biotechnology journal, 2023, 21(11):2291-2306.
doi: 10.1111/pbi.14130
pmid: 37466912
|
[57] |
WU X, CHAI M, LIU J, et al. Turnip mosaic virus manipulates DRM2 expression to regulate host CHH and CHG methylation for robust infection[J]. Stress biology, 2022, 2(1):29.
doi: 10.1007/s44154-022-00052-3
pmid: 37676449
|
[58] |
YIN J, YAN J, HOU L, et al. Identification and functional deciphering suggested the regulatory roles of long intergenic ncRNAs (lincRNAs) in increasing grafting pepper resistance to Phytophthora capsici[J]. BMC genomics, 2021, 22(1):868.
|
[59] |
ZHANG C, WANG H, NAI G, et al. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. Journal of integrative agriculture, 2024, 23(12):4074-4092.
doi: 10.1016/j.jia.2024.07.013
|
[60] |
ZHANG R, WANG Y, WANG X, et al. Differential responses of microstructure, antioxidant defense, and plant hormone signaling regulation in potato (Solanum tuberosum L.) under drought, alkaline salt, and combined stresses[J]. Scientia horticulturae, 2025, 341:114014.
|
[61] |
TONG W, LI R, HUANG J, et al. Divergent DNA methylation contributes to duplicated gene evolution and chilling response in tea plants[J]. The plant journal, 2021, 106(5):1312-1327.
doi: 10.1111/tpj.15237
pmid: 33730390
|
[62] |
ZHU Z, LI Q, GICHUKI D K, et al. Genome-wide profiling of histone H3 lysine 27 trimethylation and its modification in response to chilling stress in grapevine leaves[J]. Horticultural plant journal, 2023, 9(3):496-508.
|
[63] |
SONG Y, HE J, GUO J, et al. The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1‐mediated H3K27me3 in apple[J]. Plant biotechnology journal, 2024, 22(3):617-634.
|
[64] |
MORADPOUR M, ABDULAH S N A. CRISPR/dC as9 platforms in plants: strategies and applications beyond genome editing[J]. Plant biotechnology journal, 2020, 18(1):32-44.
|
[65] |
PAN C, SRETENOVIC S, QI Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants[J]. Current opinion in plant biology, 2021, 60:101980.
|
[66] |
PAPIKIAN A, LIU W, GALLEGO-BARTOLOMÉ J, et al. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems[J]. Nature communications, 2019, 10(1):729.
|