[1] Zhu J K. Salt and drought stress signal transduction in plants[J].Annu Rev Plant Biol,2002,53:247-273.
[2] Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signaling network[J].Annu Rev Plant Biol,2010,61:651-679.
[3] Raghavendra A S, Gonugunta V K, Christmann A, et al. ABA perception and signaling[J].Trends Plant Sci,2010,15:395-401.
[4] Duan L, Dietrich D, Ng C H, et al. Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings[J].Plant Cell,2013,25(1):324-341.
[5] Vilches-Barro A, Maizel A. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana[J].Curr Opin Plant Biol,2015,23:31-38.
[6] De Smet I, White P J, Bengough A G, et al. Analyzing lateral root development: how to move forward[J].Plant Cell,2012,24(1):15-20.
[7] 梁永书,周军杰,南文斌,等.水稻根系研究进展[J].植物学报,2016,51(1):98-106.
[8] Zhao Y, Xing L, Wang X, et al. The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes[J].Sci Signal,2014,3:7(328).
[9] De Smet I, Signora L, Beeckman T, et al. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis[J].Plant J,2003,33(3):543-555.
[10] Fujii H, Zhu J K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress[J].Proc Natl Acad Sci USA,2009,106(20):8380-8385.
[11] Gonzalez-Guzman M, Pizzio G A, Antoni R, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J].Plant Cell,2012,24(6):2483-2496.
[12] 邢国芳,冯万军,牛旭龙,等.植物激素调控侧根发育的生理机制[J].植物生理学报,2015,51:2101-2108.
[13] Brady S M, Sarkar S F, Bonetta D, et al. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis[J].Plant J,2003,34:67-75.
[14] Brocard-Gifford I, Lynch T J, Garcia M E, et al. The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE 8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth[J].Plant Cell,2004,16(2):406-421.
[15] Shkolnik-Inbar D, Bar-Zvi D. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis[J].Plant Cell,2010,22(11):3560-3573.
[16] Ding Z J, Yan J Y, Li C X, et al. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis[J].Plant J,2015,84(1):56-69.
[17] Deak K I, Malamy J. Osmotic regulation of root system architecture[J].Plant J,2005,43(1):17-28.
[18] Geng Y, Wu R, Wee C W, et al. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis[J].Plant Cell,2013,25(6):2132-2154.
[19] Benková E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J].Cell,2003,115(5):591-602.
[20] De Smet I, Tetsumura T, De Rybel B, et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis[J].Development,2007,134(4):681-690.
[21] Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, et al. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells[J].Proc Natl Acad Sci USA,2008,105(25):8790-8794.
[22] López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J].CurrOpin Plant Biol,2003,6(3):280-287.
[23] Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J].Plant Cell Environ,2005,28(1):67-77.
[24] Péret B, Larrieu A, Bennett M J. Lateral root emergence: a difficult birth[J].J Exp Bot,2009,60(13):3637–3643.
[25] De Smet I, Vanneste S, Inzé D, Beeckman T. Lateral root initiation or the birth of a new meristem[J].Plant Mol Biol,2006a.60(6):871-87.
[26] Vanneste S, De Rybel B, Beemster G T, et al. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana[J].Plant Cell,2005,17(11):3035-3050.
[27] De Smet I. Multimodular auxin response controls lateral root development in Arabidopsis[J].Plant Signal Behav ,2005,5(5):580-582.
[28] Fukaki H, Tameda S, Masuda H, et al. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis[J].Plant J,2002,29:153-168.
[29] De Smet I, Vassileva V, De Rybel B, et al. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root[J].Science,2008,322:594-597.
[30] Okumura K, Goh T, Toyokura K, et al. GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for Arabidopsis lateral root initiation[J].Plant Cell Physiol,2013,54(3):406-417.
[31] Fukaki H, Tasaka M. Hormone interactions during lateral root formation[J].Plant MolBiol,2009,69(4):437-449.
[32] González-García M P, Vilarrasa-Blasi J, Zhiponova M, et al. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots[J].Development,2011,138(5):849-859.
[33] Ubeda-Tomás S, Federici F, Casimiro I, et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size[J].CurrBiol,2009,19(14):1194-1199.
[34] De Smet I, Zhang H, Inzé D, et al. A novel role for abscisic acid emerges from underground[J].Trends Plant Sci,2006b,11(9):434-439.
[35] Okushima Y, Inamoto H, Umeda M. Ahighconcen-tration of nitrate cause stem poral inhibition of lateral root growth by suppressing cell proliferation[J].Plant Biotechnol,2011,28:413-416.
[36] Giehl R F, Lima J E, von Wirén N. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution[J].Plant Cell,2012,24(1):33-49.
[37] Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis[J].Plant J,2002,29(6):751-760.
[38] Des Marais D L, McKay J K, Richards J H, et al. Physiological genomics of response to soil drying in diverse Arabidopsis accessions[J].Plant Cell,2012,24(3):893-914.
[39] Zhang H, Han W, De Smet I, et al. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem[J].Plant J,2010,64(5):764-774.
[40] Himanen K, Boucheron E, Vanneste S, et al.Auxin-mediated cell cycle activation during early lateral root initiation[J].Plant Cell,2002,14:2339-2351.
[41] De Veylder L, Beeckman T, Beemster G T, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis[J].Plant Cell,2001,13(7):1653-1668.
[42] Gonzalez A A, Agbévénou K, Herrbach V, et al. Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula[J].Plant Signal Behav,2015,10.
[43] Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh[J].Plant Mol Biol,1993,21:641-653.
[44] Taylor I B, Burbidge A, Thompson A J. Control of abscisic acid synthesis[J].J Exp Bot,2000,51(350):1563-1574.
[45] Tan B C, Joseph L M, Deng W T, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family[J]. Plant J,2003,35(1):44-56.
[46] Koiwai H, Nakaminami K, Seo M, et al.Tissue-speci?c localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis[J].Plant Physiol,2004,134:1697-1707.
[47] Cheng W H, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions[J].Plant Cell,2002,14:2723-2743.
[48] De Tullio M C, Jiang K, Feldman L J. Redox regulation of root apical meristem organization: connecting root development to its environment[J].Plant Physiol Biochem,2010,48(5):328-336.
[49] Suzuki N, Koussevitzky S, Mittler R, et al. ROS and redox signalling in the response of plants to abiotic stress[J].Plant Cell Environ,2012,35(2):259-270.
[50] Su G, Zhang W, Liu Y L. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean[J].J Integr Plant Bio,2006,48:426-432.
[51] Vernoux T, Wilson R C, Seeley K A, et al. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development[J].Plant Cell,2000,12(1):97-110.
[52] 白玲,周云,张晓然,等.过氧化氢参与了脱落酸调控的拟南芥根形态发育[J].科学通报,2007,52(5):608-611.
[53] Sirichandra C, Gu D, Hu H C, et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase[J].FEBS Lett,2009,583(18): 2982-2986.
[54] Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J].EMBO J,2003,22(11):2623-2633.
[55] Tsukagoshi H, Busch W, Benfey P N.Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root[J].Cell,2010,143(4):606-616.
[56] He J, Duan Y, Hua D, et al. DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling[J].Plant Cell,2012,24(5): 1815-1833.
[57] Yang L, Zhang J, He J, et al. ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis[J].PLoS Genet,2014,10(12).
[58] Kazan K. Auxin and the integration of environmental signals into plant root development[J].Ann Bot,2013,112(9):1655-1665.
[59] Wang Y, Li L, Ye T, et al. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by down-regulating ABI5 expression[J].Plant J,2011,68(2):249-261.
[60] Liu X, Zhang H, Zhao Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J].Proc Natl Acad Sci USA,2013,110(38):15485-1590.
[61] Belin C, Megies C, Hauserová E, et al. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling[J].Plant Cell,2009,21(8):2253-2268.
[62] Aloni R, Aloni E, Langhans M,et al.Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism[J].Ann Bot,2009,97(5):883-893.
[63] Laplaze L, Benkova E, Casimiro I, et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation[J].Plant Cell,2007,19(12):3889-3900.
[64] Tran L S, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J].Proc Natl AcadSci USA,2007,104(51):20623-20628.
[65] Pasternak T, Potters G, Caubergs R, et al. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular levelv[J].J Exp Bot,2005,56(418):1991-2001.
[66] Ding Z, De Smet I. Localised ABA signalling mediates root growth plasticity[J].Trends Plant Sci,2013,18(10):533-535.
[67] Ali-Rachedi S, Bouinot D, Wagner M H, et al. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana[J].Planta,2004,219:479-488.
[68] Signora L De Smet I, Foyer C H, et al. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J].Plant J,2001,28:655-662.
[69] Yuan T T, Xu H H, Zhang K X, et al. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsi[J].Plant Cell and Environment,2014,3:1338-1350.
[70] Osuna D, Prieto P. Aguilar M.Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability[J].Front Plant Sci,2015,18(6):1023.
[71] Kang J, Turano F J. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana[J].Proc Natl Acad Sci USA,2003,100:6872-6877.
|