[1]Jeffery S, Verheijen F G A, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture Ecosystems Environment, 2011, 144(1): 175-187. [2]刘玉学.生物质炭输入对土壤氮素流失及温室气体排放特性的影响[D].杭州:浙江大学,2011. [3]袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010, 26(5):472-476. [4]陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J].应用生态学报,研究2011, 22(11): 2930-2934. [5]何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1-7. [6]Lehmann J, Gaunt J, Rondon M A. Biochar sequestration in terrestrial ecosystems: a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403-427. [7]孙红文. 生物炭与环境[M]. 北京:化学工业出版社, 2013:139-159. [8]Uchimiya M, Lima I M, Thomas K K, et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litterderived biochars in water and soil [J]. Journal of Agricultural and Food Chemistry, 2010,58(9):5538-5544. [9]Jiang J, Xu R K, Jiang T Y, et al. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol [J]. Journal of Hazardous Materials, 2012, 229-230:145-150. [10]Tang J C, Zhu W Y, Kookana R, et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering, 2013, 116(6):653-659. [11]Inyang M, Gao B, Yao Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. Bioresource Technology, 2012, 110:50-56. [12]Zhang X K, Wang H L, He L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research, 2013, 20(12):8472-8483. [13]Han Y X, Boateng A A, Qi P X, et al. Heavy metal and phenolad sorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlations with surface properties[J].Journal of Environmental Management, 2013, 118:196-204. [14]李明遥, 杜立宇, 张妍,等.不同裂解温度水稻秸秆生物炭对土壤Cd形态的影响[J]. 水土保持学报, 2013, 27(6):261-264. [15]Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals [J]. Plant and Soil, 2011,348(1/2):439-451. [16]Bolan N S, Adriano D C, Mani P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition [J]. Plant and Soil, 2003,251(2):187-198. [17]唐行灿, 张民. 生物炭修复污染土壤的研究进展[J]. 环境科学导刊, 2014,33(1): 17-26. [18]周建斌, 邓丛静, 陈金林,等. 棉秆炭对镉污染土壤的修复效果[J]. 生态环境, 2008, 17(5): 1857-1860. [19]崔立强, 杨亚鸽, 严金龙, 等.生物质炭修复后污染土壤铅赋存形态的转化及其季节特征[J].中国农学通报,2014,30(2):233-239. [20]高译丹,梁成华,裴中健,等.施用生物炭和石灰对土壤镉形态转化的影响[J].水土保持学报,2014,28(2):258-261. [21]林国林,杜胜男,金兰淑,等.施用生物炭和零价铁粉对土壤中镉形态变化的影响[J].水土保持学报,2013,27(4):157-165. [22]侯艳伟,曾月芬,安增莉.生物炭施用对污染红壤中重金属化学形态的影响[J].内蒙占大学学报:自然科学版,2011,42(4):460-46. [23]Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils [J]. Soil Science Society America Journal, 2006, 70(5): 1719-1730. [24]Cao XD, Ma L, Gap B,Harris W.Dairy-manure derived biochar effectively sorbs lead and atrazine.Environmental Science Technology, 2009, 43(9):3285-3291. [25]毛懿德,铁柏清,叶长城,等.生物炭对重污染土壤镉形态及油菜吸收镉的影响[J].生态与农村环境学报,2015,31(4):579-582. [26]唐行灿.生物炭修复重金属污染土壤的研究[D].山东农业大学硕士论文,2013. [27]刘晶晶,杨兴,陆扣萍,等.生物质炭对土壤重金属形态转化及其有效性的影响[J].环境科学学报,2015,35(11):3679-3687. [28]朱奇宏,黄道友,刘国胜,等.石灰和海泡石对镉污染土壤的修复效应与机理研究[J].水土保持学报,2009,23(1):111-116. [29]中国科学院南京土壤研究所. 土壤理化分析[M].上海:上海科技出版社,1978,1-320. [30]Spark D L. Methods of Soil Analysis, Part 3: Chemical Methods[M]. Madison: SSSA and ASA, 1996:703-919. [31]Guo X F, Wei Z B, Wu Q T, et al. Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments [J]. Pedosphere, 2011,21(5):650-656. [32]李江遐, 吴林春, 张军, 等. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 2015, 24(12): 2075-2081. [33]Cheng C H, Lehmann J, Engelhard H. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta[J]. 2008, 72(6):1598-1610. [34]Cheng C H, Lehmann J. Ageing of black carbon along a temperature gradient [J]. Chemosphere, 2009, 75(8): 1021-1027. [35]Liang B, Lehmann J, Solomon D, et al. Stability of biomass-derived black carbon in soils [J]. Geochimica Et Cosmochimica Acta, 2008, 72(24): 6069-6078.
|