[1] Ha H, Olson J R, Bian L, et al. Analysis of Heavy Metal Sources in Soil Using Kriging Interpolation on Principal Components[J]. Environmental Science Technology, 2014, 48(9):4999. [2] 环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业, 2014,36(5):10-11. [3] Zhuang P, Zou H, Shu W. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study[J]. 环境科学学报(英文版), 2009, 21(6):849-53. [4] 王振中,张友梅,邓继福,等.重金属在土壤生态系统中的富集及毒性效应[J].应用生态学报, 2006,17(10):1948-1952. [5] 廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施[J].环境科学学报, 2007,27(6):881-893. [6] Prasad M N V. Phytoremediation of Metal-Polluted Ecosystems: Hype for Commercialization [J]. Russian Journal of Plant Physiology, 2003, 50(5):686-701. [7] 龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报, 2002,13(6):757-762. [8] 魏树和,周启星,王新,等.农田杂草的重金属超积累特性研究[J].中国环境科学,2004,24(1):105-109. [9] Sun Y, Zhou Q, Wang L, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2–3):808-814. [10] Sarma H. Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Technology[J]. Journal of Environmental Science Technology, 2011, 4(2):647-647. [11] Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species ( Sedum alfredii, Hance)[J]. Plant Soil, 2004, 259(1-2):181-189. [12] Sun Y, Zhou Q, Diao C. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5):1103-1110. [13] 郭艳杰, 李博文, 杨华. 印度芥菜对土壤Cd,Pb的吸收富集效应及修复潜力研究[J]. 水土保持学报, 2009, 23(4):130-135. [14] 徐卫红, 王宏信, 刘怀,等. Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响[J]. 环境科学, 2007, 28(9):2089-2095. [15] 鲍士旦.土壤农化分析.3版[M].中国农业出版社, 2000. [16] 殷永超. Cd污染土壤的植物修复及低吸收蔬菜品种筛选研究[D]. 中国科学院大学, 2014. [17] 孙园园,关萍,何杉,等.镉胁迫对多花黑麦镉积累特征、生理抗性及超微结构的影响[J].草业科学, 2016,33(8):1589-1597. [18] 杨勇,王巍,江荣风,等.超累积植物与高生物量植物提取镉效率的比较[J].生态学报, 2009,29(5):2732-2737. [19] 周启星.污染土壤修复原理与方法[M].科学出版社, 2004. [20] Raskin I, Ensley B D. Phytoremediation of toxic metals: using plants to clean up the environment [M]. John Wiley, 1999. [21] Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry [J]. Biorecovery 1, 1989, 81-126.. [22] 魏树和,杨传杰,周启星.三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征[J].环境科学, 2008,29(10):2912-2918. [23] Robinson B H, Chiarucci A, Brooks R R, et al. The nickel hyperaccumulator plant Alyssum bertolonii, as a potential agent for phytoremediation and phytomining of nickel[J]. Journal of Geochemical Exploration, 1997, 59(2):75-86. [24] Raskin I, Kumar P N, Dushenkov S, et al. Bioconcentration of heavy metals by plants[J]. Current Opinion in Biotechnology, 1994, 5(3):285-290. [25] 崔爽,刘艺芸,单新宇,等.几种菊科花卉植物对铅的富集特征[J].福建农业学报, 2014(4):385-388. [26] Liao V H, Dong J, Freedman J H. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity.[J]. Journal of Biological Chemistry, 2002, 277(44):42049-59. [27] Heiss S, Wachter A, Bogs J, et al. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure[J]. Journal of Experimental Botany, 2003, 54(389):1833. [28] 王一喆. 大叶落地生根对镉的反应富集及组培快繁技术研究[D]. 河南大学, 2008. [29] Ghosh M, Singh S P. A review on phytoremediation of heavy metals and utilization of its byproducts.[J]. Applied Ecology Environmental Research, 2005, 3(1):1-18. [30] 毕君,郭伟珍,高红真.9种植物对镉的忍耐和富集能力研究[J].中国农学通报,2013,29(34):12-16. [31] 廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施[J].环境科学学报,2007,27(6):881-893. [32] 陈虎,郭笃发,郭峰,等.作物吸收富集镉研究进展[J].中国农学通报,2013,29(3):6-11. [33] 赵晶,冯文强,秦鱼生,等.不同氮磷钾肥对土壤pH和镉有效性的影响[J].土壤学报,2010,47(5):953-961. [34] Hong Chen, Teresa J. Cutright. The interactive effects of chelator,fertilizer, and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil[J]. Journal of Soils and Sediments, 2002, 2(4):203-210. [35] Rui-lian Sun, Qi-xing Zhou, Cai-xia Jin. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum, L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1/2):125-134. [36] R?mer W, Kang D, Egle K, et al. The acquisition of cadmium by Lupinus albus L. Lupinus angustifolius L. and Lolium multiflorum Lam.[J]. Journal of Plant Nutrition and Soil Science = Zeitschrift fuer Pflanzenernaehrung und Bodenkunde, 2015, 163(6):623-628. [37] Sloan J J, Dowdy R H, Dolan M S. Recovery of Biosolids-Applied Heavy Metals Sixteen Years after Application[J]. Journal of Environmental Quality, 1998, 27(6):1312-1317. [38] 袁园.理化性质对土壤–农作物系统重金属生物有效性影响研究进展[J].地球科学前沿,2014,04(4):214-223. [39] 黄文粤,张清海,林绍霞,等.有机肥对土壤重金属生物有效性影响研究进展[J].天津农业科学,2017,23(2):26-30. [40] 杨宇.有机肥、CaCO3和磷肥对土壤重金属化学形态的影响及改良效果的研究[D].沈阳农业大学,2003. [41] 王晨,王海燕,赵琨,等.硅对镉、锌、铅复合污染土壤中黑麦草生理生化性质的影响[J].生态环境学报,2008,17(6):2240-2245. [42] Sarwar N, Ishaq W, Farid G, et al. Zinc–cadmium interactions: Impact on wheat physiology and mineral acquisition[J]. Ecotoxicology Environmental Safety, 2015, 122(528):528-36.
|