[1] 向殿军, 殷奎德, 满丽莉, 等. 大白菜低温胁迫转录因子BcICE1 的克隆及表达分析[J]. 分子植物育种, 2011, 9(3): 364-369. [2] 田雲, 蒋景龙, 沈季雪, 等. 低温胁迫对5个栽培品种黄瓜生长及生理指标的影响[J]. 分子植物育种, 2017, 15(5): 1938-1944. [3] Shukla S, Felderhoff T J, Saballos A, et al. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench) [J]. Field Crops Research, 2017, 203: 181-191. [4] Mocoeur A, Zhang Y M, Liu Z Q, et al. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour) [J]. Theoretical and Applied Genetics, 2015, 128: 1685-1701. [5] 史红梅, 张海燕, 杨彬, 等. 低温胁迫对高粱幼苗MDA 含量、SOD 和POD 活性的影响[J]. 中国农学通报, 2015, 31(18): 74-79. [6] 白志英, 李存东, 孙红春, 等. 小麦抗旱生理指标的主成分分析及综合评价[J]. 中国农业科学, 2008, 41(12): 4264-4272. [7] 王树刚, 王振林, 王平, 等. 不同小麦品种对低温胁迫的反应及抗冻性评价[J]. 生态学报, 2011, 31(4): 1064-1072. [8] Mutlu S, Karadagolu ?, Atici ?, et al. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast[J]. Biologia Plantarum, 2013, 57(3): 507-513. [9] Fan J B, Ren J. Antioxidant Responses and gene expression in bermudagrass under cold stress[J]. Journal of the American Society for Horticultural Science, 2014, 139 (6): 699-705. [10] Kazemi-Shahandashtia S, Maali-Amiria R, Zeinali Hassan, et al. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings[J]. Journal of Plant Physiology, 2014, 171: 1106-1116. [11] Shi H T, Ye T T, Zhong B, et al. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium[J]. Journal of Integrative Plant Biology, 2014, 56(11): 1064-1079. [12] Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat[J]. Frontiers in plant science, 2014, 5: 170. [13] Xu J, Li Y, Sun J, et al. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance[J]. Plant Biology, 2013, 15(2): 292-303. [14] Kornyeyev D, Logan B A, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes[J]. Physiologia Plantarum, 2001, 113(3): 323-331. [15] Shu C, Yang R, Yin L, et al. Selection of rootstocks for better morphological characters and resistance to low-temperature stress in the sweet pepper cultivar ‘Hongxing No. 2’[J]. Horticulture, Environment, and Biotechnology, 2016, 57(4): 348-354. [16] 朱进. 低温胁迫下不同西葫芦品种抗寒性生理指标的比较[J]. 湖北农学院学报, 2004, 24(2): 106-108. [17] 孟凡珍, 张振贤, 于贤昌等. 田间低温胁迫对大白菜某些理化特性的影响研究[J]. 中国生态农业学报, 2005, 13(2): 84-86. [18] 李小安, 周青平. 低温胁迫对扁蓿豆的脯氨酸含量和POD、SOD酶活性的影响[J]. 青大学学报, 2009, 27(1):64-67. [19] Tarkowski ? P, Ende W V. Cold tolerance triggered by soluble sugars: a multifaceted countermeasure[J]. Frontiers in plant science, 2015, 6: 203. [20] 武辉, 侯丽丽, 周艳飞等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选[J]. 中国农业科学, 2012, 45(9): 1703-1713. [21] 王俊娟, 王帅, 陆许可等. 棉花幼苗对低温胁迫的响应及抗冷机制初步研究[J]. 棉花学报, 2017, 29(2): 147-156.
|