[1] Foyer CH, Noctor G. Leaves in the dark see the light [J]. Science, 2000a, 284( 284):5414-5416. [2]许大全.植物光胁迫研究中的几个问题[J].植物生理学通讯, 2003, 39(5): 493-495. [3]Maxwell K,Johnson G N.Chlorophyll fluorescencea practical guide[J].SJournal of experimental botany, 2000, 51(345):659-668. [4] Aro EM, Virgin I, Andersson B. Photoinhibitition of Photosystem II, Inactivation, Protein damage and turnover [J]. Bioch in Bjophys Acta 1993,1143 (2):113-134. [5]沈允刚,施教耐,许大全. 动态光合作用[M]. 北京:科学出版社, 1993,143-145. [6] Inoue K, Fujii Y, Yokoyama E, et al. The photoinhibition site of photosystern I in isilated chloroplasts [J]. Plant Cell Physiol, 1989,30(5):65-71. [7] Cadenas E. Biochemistry of oxygen toxicity[J]. Ann.Rev.Biochem, 1989, 58(1):79-110. [8] Golbeck JH. Structure,function and organization of the photosystem I reaction cencer complex[J]. Biochim Biophys Vcta, 1987, 895(895):167-204. [9] Ball R,Wild A. History of photoinhibition research [J]. Photochern photobiol B, boil, 1993(20):79-85. [10] Kyle DJ.The biochemical basis for photo inhibition of photosystem II[J]. In:Kyle DJ.Osmond CB. Arntzen CHJ (eds) Topics in photosynthesis. Photoinhibition. Amsterdam:Elsevier,New Fork,Oxford,1987(9):196-226. [11]张子山,张立涛,高辉远, 等. 不同光强与低温交叉胁迫下黄瓜PSⅠ与PSⅡ的光抑制研究[J]. 中国农业科学,2009 ,42(12):4288-4293. [12]秦立琴.非生物胁迫下花生叶片的光抑制机理[D].山东农业大学,2010. [13] Krause GH, Weis E. ChlorophyII fluoresernce and photosynthesis: the basics [J]. Annu Rev Plant Plant Physiol[J]. Plant Mol Biol, 1991(42):313-349. [14] Flexas J, Medrano L. Energy dissipation in C3 plant under drought [J]. Funct Plant Biol, 2002, 29(29):1209-1215. [15] Demmig-Adams B, Adams B, Adams W. The role of xanthophyII cycle carotenoids in the pretection of photosynthesis [J].Trends Plant Sci, 1996, 1(1):21-26. [16] Niyogi KK. photoprotection revisited: Genetic and Molecular approaches, Annu.Reo plant physiol[J]. Plant Mol Biol, 1999, 50(4):333-359. [17]Müller P,Li X P,Niyogi K K.Non-photochemical quenching. A response to excess light energy[J].SPlant physiology, 2001,125(4):1558-1566. [18]Li Xiao-Ping,Gilmore Adam M,Niyogi Krishna K.Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II[J].SThe Journal of biological chemistry,2002,277(37):33590-33597. [19]徐坤,邹琦,郑国生.强光下姜叶片的光呼吸及叶黄素循环[J]. 园艺学报, 2002,29(1):47-51. [20]李朝霞,赵世杰,孟庆伟.光呼吸途径及其功能等[J]. 植物学通报,2003,20(2):190-197. [21]Kozi Asada.THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons[J].Annual Review ofSPlantSPhysiology SPlant Molecular Biology,1999 , 50 ( 50 ) : 601 – 639. [22] Endo T, Mil H, Shikanai T, et al. Donation of electrons to plastoquinone by NAD (P) H dehyd rogenase and by ferredoxin-quinone reductase in spinach chloroplasts [J]. Plant and Cell Physiol, 1997, 38(11):1272-1277. [23]Endo, Tsuyoshi; Shikanai, Toshiharu; Sato,Set al.NAD(P)HSDehydrogenase-Dependent, AntimycinSA-SSensitive Electron DonationStoSPlastoquinoneSinSTobacco Chloroplasts[J] . Plant and CellSPhysiology,1998 ,S39( 11 ) : 1226 – 1231. [24] Miyake C, Yokota A. Cyclic flow of electtrons with in PSII in thylakoid membranes [J]. Plant and Cell Physiol, 2001, 42(5):508-515. [25] Heber U, Walker D. Concerning a dual function of coupled cyclic electron transport in leaves [J]. Plant physiology, 1992, 100(4):1621-1626. [26] Satoh K, Fork DC, The relationship between state II to state I transitions and cyclic electron flow around photosystem I [J]. Photosynth Res, 1983, 4(1):245-256. [27] Robert T.SFurbank.Regulation of photosynthesis in isolated barley protoplasts: the contribution of cyclicSphotophosphorylation[J] .S{journal_cn_name},1987,894(2):332-338. [28] Foyer CH, Kunert KJ, Lelandais M. Photooxida stress in plants [J]. Physiol Plant.1994, 92(4):696-717. [29]N.K.SChoudhury,R.K.SBehera.Photoinhibition ofSPhotosynthesis: RoleSofSCarotenoidsSinSPhotoprotectionSofSChloroplast Constituents[J] . Photosynthetica, 2001 ,S39(4):481-488. [30] Munne-Bosch S. The function of tocopherola and tocorienola in plants [J]. Crit Re Plant Sci, 2002(21):31-57. [31]王燕鹏,崔震海,朱延姝,等.玉米C4光合叶不同部位解剖结构和光抑制特性的比较[J].植物生理学通讯,2012,48 (6): 571-576. [32]崔红云. 转C4基因(PEPC PPDK)水稻光合生理及耐光抑制特性的研究[D].南京师范大学, 2012. [33] 刘小阳.光抑制的防御机制[J].宿州学院学报, 2004, 19(5): 83-86. [34] Hetherington SE, He J, Smillie RM. Photoinhibition at low temperature in chilling susceptible and resistant plants [J]. Plant Physiol, 1989, 90(4):1609-1615. [35] 李新国,段伟,孟庆伟,等. PSI的低温光抑制[J].植物生理学通讯, 2002,38(4): 375-381. [36]孙永平.5-氨基乙酰丙酸(ALA)提高逆境条件下西瓜幼苗叶片光合与光抑制保护机理研究[D].南京农业大学, 2009. [37]颉敏华.青花菜叶片的光抑制特性和光破坏防御机制及锌的影响[D]. 西北农林科技大学,2009. [38]孙晓琳.番茄类囊体膜不饱和脂肪酸增多缓解低温下PSⅡ的光抑制[D]. 山东农业大学, 2011. [39]张国显.外源钙缓解低夜温导致番茄叶片光抑制的机理[D].沈阳农业大学,2015. [40]张秀丽, 张倩倩, 许天修, 等.施用化肥和农家肥缓解盐碱地桑树光合午休PSⅡ光抑制[J]. 草业科学, 2015, 32(5):745-753. [41]王芳,杨莎,郭峰,等.钙对花生(Arachis hypogaea L.)幼苗生长、活性氧积累和光抑制程度的影响[J].生态学报,2015, 35(5):1496-1504. [42] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 33(4):317-345. [43]魏捷,余辉,李良壁,等.菠菜PSI颗粒中色素和蛋白的光破坏进程[J].科学通报, 2000,45 (6): 612-617. [44] Terashima I, Funayama S, Sonoike K. The site of photoinhibition in leaves of Cucumis sativus L, at low temperatures is photosystem I, not system II [J]. PLANTA, 1994, 193(2):300-306. [45] Ishibashi M, Sonoike K, Watanabe A. The inhibition of photosynthesis after exposure of bean leaves to various low leaves of CO2[J]. Plant and Cell Physiol, 1997, 38(3):619-624. [46] Snoike K. Various aspects of inhibition of photosynthesis under light/chilling stress:“photoinhibition at chilling temperature”versus “chilling damage in the light”[J]. Plant Res, 1998, 111(111),121-129. [47] Tjus SE, M?ller BL, Scheller HV. Photosystem I is a nearly targer of photoinhibition in barely illuminated at chilling temperatures [J]. Plant Physiol, 1998, 116(2):755-764. [48]徐婷婷.光与低温复合胁迫下杨梅叶片光抑制的分子调控机理研究[D].浙江农林大学,2015. [49] Golbeck JH, Bryant DA. Photosystem I. Curr Top Bioenerg [M].1991, 163-177. [50]王振磊,陈海江,林敏娟,等. 黄金梨和鸭梨叶片光合作用的光抑制及其恢复的比较研究[J]. 园艺学报, 2009, 36 (9):1261-1268. [51] Powlem SB. Photoinhibition of photosyntheain induced by viaible light [J]. Ann Rev Plant Physiol, 1984, 35(10):15-50. [52]计玮玮.高温强光诱导砂梨叶片光抑制的机理研究[D].浙江大学,2012. [53]李志真, 刘东焕, 赵世伟,等.环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38 (7): 720-728. [54]师生波,张怀刚,师瑞,等.青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J].植物生态学报, 2014, 38 (4): 375-386. [55]胡文海,张斯斯,闫小红,等. 长期遮荫后全光照对羊踯躅叶片光抑制及光保护机制的影响[J]. 井冈山大学学报(自然科学版), 2014, 35(5):42-46. [56]孔海云.茶树低温光抑制发生的条件及遮荫效应研究[D].山东农业大学,2011. [57]刘广银,梁娇,隗溟.遮阴水稻转入自然强光后光合作用的光抑制和恢复[J].西南师范大学学报(自然科学版),2011, 36(5):156-158. [58] Dale JE, Milthorpe FL.The Growth and Functioning of Leaves[M]. London: Cambridge University Preaa,1983:315-345. [59] Koglowaki TT. Water Defieita and Plant Growth IV [M]. New York: Academic Press, 1976:153-190. [60]谷昕,李志强,姜闯道,等.水淹导致皇冠草光合机构发生变化并加剧其出水后光抑制[J].生态学报, 2009,29(12):6466-6474. [61]Munné-Bosch S, Jubany-Marí T, Alegre L. Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts [J]. Plant, Cell and Environment, 2001, 24(12): 1319-1327. [62]林金科.水分胁迫对茶树光合作用的影响[J].福建农林大学学报(自然科学版),1998, 27(4): 423-427. [63]王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报, 2002, 22(2): 206-214. [64]刘云峰,秦洪文,石雷,等.水淹对水芹叶片结构和光系统Ⅱ光抑制的影响[J]. 植物学报, 2010, 45 (4): 426-434. [65] Sudhir PR, Murthy SDS. Effects of salt stress on basic processes of photosynthesis [J]. New Journal of Chemistry, 2004, 42(4):481-486. [66]宋旭丽,胡春梅,孟静静,等. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J]. 植物生态学报, 2011, 35 (6): 681–686. [67] Mehta P, Jajoo A, Mathur S, BhartiS. ChlorophyII a fluorescence study revealing effects of high salt stree on photosystemII in wheat leaves[J]. Plant Physiology and Biochemistry, 2010, 48:16-20. [68] Muuns R, Tester M. Mechanism of salinity to lerance[J]. Annual Review of Plant Biology. 2008(59):651-681. [69]惠俊爱,李永华,李卓,等.高浓度 CO2 对紫星凤梨光合作用和生长发育的影响.园艺学报,2006,33 (5):1027-1032 [70]Herrick JD,Thomas RB.No photosynthetic down regulation in sweetgum trees (Liquidambar styraciflua L.)after three years of CO2 enrichment at the Duke Forest FACE experiment[J].Plant,Cell and Environment,2001,24: 53-64. [71]Ziska LH, Hogan KP, Smith AP. Growth and photosynthetic responses of nine tropical species with long term exposure to elevated carbon dioxide[J].Oecologia,1991,86: 383-389. [72]Schimel DS.Terrestrial ecosystems and the carbon cycle[J].Global Change Biology,1995,1: 77-91. [73]林伟宏.植物光合作用对大气 CO2 浓度升高的反应[J].生态学报,1998,18(5): 121-128. [74]Drake B,Gonzàlez-Meler M,Long S. More effi-cient plants: Aconsequence of rising atmospheric CO2 [J].Annual Review of Plant Physiology and Plant Molecular Biology,1997,48(1): 609-639. [75]郝兴宇,韩雪,李萍,等.大气CO2浓度升高对绿豆叶片光合作用及叶绿素荧光参数的影响[J].应用生态学报,2011, 22(10): 2776-2780. [76]郝兴宇.大气 CO2 浓度升高对中国主要作物影响的研究[M].北京:气象出版社,2014. [77]Leakey A D B,Uribelarrea M,Ainsworth E A, et al. Photosynthesis,productivity,and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J].Plant Physiology,2006,140(2): 779-790. [78]Zhang Q-D (张其德),Lu C-M (卢从明),Liu L-N (刘丽娜),et al.Effects of doubled CO2 on contents of photosynthetic and on kinetic parameters of fluorescence induction in different genotypes of soybean[J]. Acta Botani ca Sinica (植物学报),1997,39(10): 946-950 (in Chinese) [79]Zhang Q-D (张其德),Lu C-M (卢从明),Liu L-N (刘丽娜),et al.The effect of elevated CO2 on the functions of PSⅡ in soybean leaves[J].Acta Phytoecologica Sinica (植物生态学报),1996,20(6): 517-523 (in Chinese). [80]Wang KY,Kellomakl S.Effects of elevated CO2 and soil-nitrogen supply on chlorophyll fluorescence and gas exchange in Scots pine,based on a branch-in-bag experiment[J].New Phytologist,1997,136: 277-286. [81]Ainsworth E,Rogers A,Nelson R,Long S.Testing the‘source-sink’hypothesis of downregulation of photosynthesis in elevated[CO2]in the field with single gene substitutions in Glycine max[J].Agricultural and Forest Meteorology,2004,122(1): 85-94. [82]王晨光,郝兴宇,李红英,等. CO2浓度升高对大豆光合作用和叶绿素荧光的影响[J].核农学报,2015,29(8):1583-1588. [83]夏建荣,高坤山.高浓度CO2培养条件下极大螺旋藻光抑制研究[J].水生生物学报, 2006, 1(26): 15-18.
|