[1] 潘国才, 丁爱华. 蓖麻的综合利用现状[J]. 农业科技与装备, 2009(1): 1-2. [2] HUANG H G, YUN, WANG L J , et al. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil [J]. Bioresource Technology, 2011, 102(23): 11034-11038. [3] MUTLU H, MEIER M A R. Castor oil as a renewable resource for the chemical industry [J]. European Journal of Lipid Science and Technology, 2010. 112(1): 10-30. [4] 曾小龙. 蓖麻在逆境胁迫下的抗性及耐性机制研究进展[J]. 中国农学通报, 2010, 26(4): 123-125. [5] KOORNNEEF M, BENTSINK L, HILHORST H. Seed dormancy and germination [J]. Current Opinion in Plant Biology, 2002, 5(1): 33-36 [6] SEVERINO L S, AULD D L. Study on the effect of air temperature on seed development and determination of the base temperature for seed growth in castor (Ricinus communis L.) [J]. Australian Journal of Crop Science, 2015, 8(2). [7] 白雪, 李兴, 刘鹏, 等. 低温胁迫对蓖麻种子萌发过程中生理生化影响[J]. 农学学报, 2017, 7(3): 5-8. [8] 王爱国, 邵从本, 罗广华, 等. 大豆下胚轴线粒体的衰老与膜脂的过氧化作用[J]. 植物生理学报, 1988, 14(3): 269. [9] 刘大永, 王维香. 过氧化氢对水稻幼苗中CAT 和POD 活性的影响[J]. 作物学报, 1998, 24(3): 320-324. [10] LEVITT J. Responses of Plant to Environmental Stress [M]. New York: Academic Press, 1980: 365-488. [11] SILVA F V D F, MENDES B D S, ROCHA M D S, et al. Photosynthetic pigments and gas exchange in castor bean under conditions of above the optimal temperature and high CO2 [J]. Acta Scientiarum Agronomy, 2015, 37(3): 331. [12] KADERBHAI N, BEECHEY R B, KADERBHAI M. Castor Bean Mitochondrial Protein Synthesis in Response to Temperature-Induced Stress [M]. Plant Mitochondria. Springer US, 1987: 309-312. [13] 王金妹, 阮成江, 黄明月, 等. 蓖麻耐盐性的初步研究[J]. 河南农业科学, 2011, 40(5): 67-73. [14] TADAYYON A, NIKNESHAN P, PESSARAKLI M. Effects of Drought Stress on Concentration of Macro and Micronutrients in Castor (Ricinus Communis L.) Plant [J]. Journal of Plant Nutrition, 2017, 41(1): 00-00. [15] DAI Z, EDWARDS G E, KU M S B. Control of phyotosynthesis and stomatal conductance in Ricinus communis L.(castor bean) by leaf to air vapour pressure deficit [J]. Plant Physiology, 1992, 99: 1426-1434. [16] SHI G, XIA S, YE J, et al. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology [J]. Environmental & Experimental Botany, 2015, 111: 127-134. [17] 刘鹏. 蓖麻细胞色素P450基因RNAi植物表达载体构建及遗传转化的研究[D]. 沈阳农业大学, 2012. [18] 王秀香. 土壤水分胁迫对不同品种蓖麻叶片丙二醛含量的影响[J]. 科技资讯, 2012(16): 137-138. [19] BABITA M, MAHESWARI M, RAO L M, et al. Osmotic adjustment, drought tolerance and yield in castor ( Ricinus communis, L.) hybrids [J]. Environmental & Experimental Botany, 2010, 69(3): 243-249. [20] 毕韬韬. 不同蓖麻品种RAPD分析及抗干旱特性的研究[D]. 天津科技大学, 2009. [21] KARIMI S, ABBASPOUR H, SINAKI J M, et al. Evaluation of Drought Stress and Foliar Chitosan on Biochemical Characterices of Castor Bean (Ricinus communis L.) [J]. Research Journal of Biological Sciences, 2012, 7(3): 117-122. [22] GANG L, WAN S, JIAN Z, et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels [J]. Industrial Crops & Products, 2010, 31(1): 13-19. [23] 王金妹, 阮成江, 黄明月, 等. 蓖麻耐盐性的初步研究[J]. 河南农业科学, 2011, 40(5): 67-73. [24] PINHEIRO H A, SILVA J V, ENDRES L, et al. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean ( Ricinus communis, L) seedlings subjected to salt stress conditions [J]. Industrial Crops & Products, 2008, 27(3): 385-392. [25] 王艳树, 李凤山, 张玉霞, 等. 盐碱胁迫对蓖麻种子萌发的影响[J]. 安徽农业科学, 2007, 35(1): 41-43. [26] 陶红, 陈和, 陈健, 等. 盐分胁迫对蓖麻幼苗叶绿素、脯氨酸等的影响研究[J]. 现代园艺, 2016(10). [27] 李军. 盐分胁迫条件下蓖麻苗期对外源钙调节的响应[D]. 扬州大学, 2011. [28] 刘贵娟. 盐分胁迫条件下蓖麻萌发出苗及幼苗对外源赤霉素调节的响应[D]. 扬州大学, 2013. [29] 黄建, 冯耀祖, 刘易, 等. NaCl胁迫对蓖麻功能叶光系统Ⅱ荧光特性的影响[J]. 干旱区资源与环境, 2015, 29(7): 145-149. [30] 张絜, 姚舸, 钦佩. 盐胁迫对蓖麻Na+、K+吸收分布和叶绿素荧光的影响[J]. 安徽农业科学, 2008, 36(29): 12566-12570. [31] 艾丽格玛. 蓖麻耐盐性状调控基因的研究[D]. 天津科技大学, 2015. [32] PATEL M K, JOSHI M, MISHRA A, et al. Ectopic expression of SbNHX1, gene in transgenic castor ( Ricinus communis, L.) enhances salt stress by modulating physiological process [J]. Plant Cell Tissue & Organ Culture, 2015, 122(2): 477-490. [33] SANGITA TALUKDAR, MARK G M, AARTS. Araebidopsis thaliana and. Thlaspi caerulescens respond compareably to low zinc [J]. Plant Soil, 2008, 306: 85-94. [34] KUPPER H, ZHAO F J, MCGRATH S P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens [J]. Plant Physiology, 1999, 199 (11): 305-311. [35] HUANG G, JIN Y, ZHENG J, et al. Accumulation and distribution of copper in castor bean ( Ricinus communis, L.) callus cultures: in vitro [J]. Plant Cell Tissue & Organ Culture, 2017, 128(1): 1-10. [36] REN C, YOU J, QI Y, et al. Effects of sulfur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil [J]. Environmental Science & Pollution Research, 2017(3): 1-8. [37] HUANG G, GUO G, YAO S, et al. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress [J]. International Journal of Phytoremediation, 2016, 18(1): 33-40. [38] BAUDDH K, KUMAR A, SRIVASTAVA S, et al. A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard [J]. Archives of Agronomy & Soil Science, 2016, 62(6): 877-891. [39] 张玉芬. 蓖麻对镉的耐性机制及有机酸对镉积累调控作用[D]. 内蒙古农业大学, 2016. [40] 李君, 葛跃, 王明新, 等. 镉对蓖麻耐性生理及营养元素吸收转运的影响[J]. 环境科学学报, 2016, 36(8): 3081-3087. [41] ZHANG H, GUO Q, YANG J, et al. Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems [J]. 2014, 26(10): 2048-2055. [42] LIU C, GUO J, CUI Y, et al. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings [J]. Plant & Soil, 2011, 344(1-2): 131-141. [43] ZHANG H, GUO Q, YANG J, et al. Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation [J]. Ecotoxicology & Environmental Safety, 2015, 120(120): 184-192. [44] 易诗明, 蒋丽娟, 易心钰, 等. 铅锌胁迫对蓖麻种子萌发与根系形态的影响[J]. 湖南林业科技, 2017, 44(1): 19-24. [45] SEN T K, MOHAMMOD M, MAITRA S, et al. Removal of Cadmium from Aqueous Solution Using Castor Seed Hull: A Kinetic and Equilibrium Study [J]. CLEAN - Soil, Air, Water, 2015, 38(9): 850-858.
|