Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (29): 47-53.doi: 10.11924/j.issn.1000-6850.casb2020-0053
Special Issue: 生物技术
Previous Articles Next Articles
Wang Shuang1,2(), Li Haiying1,2(
)
Received:
2020-04-28
Revised:
2020-08-26
Online:
2020-10-15
Published:
2020-10-16
Contact:
Li Haiying
E-mail:suangsuang0923@163.com;lvzh3000@sina.com
CLC Number:
Wang Shuang, Li Haiying. Plant E3 Ubiquitin Ligase and Abiotic Stress: Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 47-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0053
E3泛素连接酶 | E3类型 | 逆境 | 调控方式 | 互作蛋白 | 作用机制 | 参考文献 |
---|---|---|---|---|---|---|
PUB22PUB23 | U-box | 干旱 | - | PYL9 | 泛素化修饰PYL9,促进降解 | [28] |
SDIR1 | RING | 干旱 | + | SDIRIP1 | ABA依赖,促进气孔关闭 | [29-31] |
盐 | - | 泛素化修饰SDIRIP1,促进降解 | ||||
AtAIRP4 | RING-HC | 干旱 | + | / | ABA依赖,促进气孔关闭 | [32] |
OsCLR1 | RING-H2 | 干旱 | + | OsTSJT1 | ABA依赖,促进气孔关闭 | [33] |
DHS | RING | 干旱 | - | ROC4 | 降解蜡质合成正调节因子ROC4 | [34] |
PnSAG1 | U-box | 盐 | - | / | 逆境响应基因表达降低 | [38] |
TaPUB1 | U-box | 盐 | + | TAMP | 诱导离子通道相关基因的表达 | [40] |
STRF1 | RING-H2 | 盐 | - | / | 影响与膜运输系统相关基因的表达 | [41] |
OsSIRP1 | RING-H2 | 盐 | - | / | / | [42] |
OsSIRP2 | RING-HC | 盐 | + | OsTKL1 | 泛素化修饰OsTKL1,促进降解 | [43] |
OsSIRH2-14 | RING-H2 | 盐 | + | OsHKT2;1 | 降解盐相关蛋白OsHKT2;1 | [44] |
CaPUB1 | U-box | 冷 | + | RNP6 | 低温诱导基因表达增强 | [45] |
干旱、盐 | - | 泛素化修饰RNP6,促进降解 | [46] | |||
OsSRFP1 | RING-H2 | 冷 | - | / | 调控ROS相关基因的表达 | [47] |
AtATL78 | RING | 干旱 | + | / | ABA依赖,促进气孔关闭 | [48] |
冷 | - | / | / | [49] | ||
AtPUB48 | U-box | 热 | + | / | 诱导热相关基因表达 | [50] |
OsHIRP1 | RING-HC | 热 | + | OsAKR4OsHRK1 | 诱导热相关基因表达 | [51] |
TaFBA1 | SCF | 热 | + | TaASRP1 | ROS清除系统基因表达增强,降低蛋白质羰基化水平 | [52] |
E3泛素连接酶 | E3类型 | 逆境 | 调控方式 | 互作蛋白 | 作用机制 | 参考文献 |
---|---|---|---|---|---|---|
PUB22PUB23 | U-box | 干旱 | - | PYL9 | 泛素化修饰PYL9,促进降解 | [28] |
SDIR1 | RING | 干旱 | + | SDIRIP1 | ABA依赖,促进气孔关闭 | [29-31] |
盐 | - | 泛素化修饰SDIRIP1,促进降解 | ||||
AtAIRP4 | RING-HC | 干旱 | + | / | ABA依赖,促进气孔关闭 | [32] |
OsCLR1 | RING-H2 | 干旱 | + | OsTSJT1 | ABA依赖,促进气孔关闭 | [33] |
DHS | RING | 干旱 | - | ROC4 | 降解蜡质合成正调节因子ROC4 | [34] |
PnSAG1 | U-box | 盐 | - | / | 逆境响应基因表达降低 | [38] |
TaPUB1 | U-box | 盐 | + | TAMP | 诱导离子通道相关基因的表达 | [40] |
STRF1 | RING-H2 | 盐 | - | / | 影响与膜运输系统相关基因的表达 | [41] |
OsSIRP1 | RING-H2 | 盐 | - | / | / | [42] |
OsSIRP2 | RING-HC | 盐 | + | OsTKL1 | 泛素化修饰OsTKL1,促进降解 | [43] |
OsSIRH2-14 | RING-H2 | 盐 | + | OsHKT2;1 | 降解盐相关蛋白OsHKT2;1 | [44] |
CaPUB1 | U-box | 冷 | + | RNP6 | 低温诱导基因表达增强 | [45] |
干旱、盐 | - | 泛素化修饰RNP6,促进降解 | [46] | |||
OsSRFP1 | RING-H2 | 冷 | - | / | 调控ROS相关基因的表达 | [47] |
AtATL78 | RING | 干旱 | + | / | ABA依赖,促进气孔关闭 | [48] |
冷 | - | / | / | [49] | ||
AtPUB48 | U-box | 热 | + | / | 诱导热相关基因表达 | [50] |
OsHIRP1 | RING-HC | 热 | + | OsAKR4OsHRK1 | 诱导热相关基因表达 | [51] |
TaFBA1 | SCF | 热 | + | TaASRP1 | ROS清除系统基因表达增强,降低蛋白质羰基化水平 | [52] |
[1] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59:651-681.
URL pmid: 18444910 |
[2] | Hou X, Kabin Xie, Jialing Yao, et al. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance[J]. Proceedings of the National Academy Sciences, 2009,106(15):6410-6415. |
[3] | 刘强, 王占武, 周晓梅. 盐胁迫下五种非粮能源植物抗氧化防御反应研究[J]. 吉林师范大学学报:自然科学版, 2016,37(1):119-123. |
[4] | 李云霞, 程晓霞, 代小梅, 等. 植物在逆境胁迫中的细胞程序性死亡[J]. 生物技术通报, 2009(4):7-11. |
[5] | 钱宝云, 李霞. 植物气孔运动调节的新进展[J]. 植物研究, 2013,33(1):120-128. |
[6] | Avin-Wittenberg T. Autophagy and its role in plant abiotic stress management[J]. Plant Cell and Environment, 2019,42(3):1045-1053. |
[7] | 付晨熙, 肖自华, 高飞, 等. 植物应答非生物胁迫的蛋白质组学研究进展[J]. 基因组学与应用生物学, 2016,35(12):3569-3582. |
[8] |
Stone S L. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling[J]. Frontiers in Plant Science, 2014,5:135.
URL pmid: 24795732 |
[9] | 周玉成, 郭梦楠, 程世鹏, 等. 布鲁菌16M感染后宿主免疫相关蛋白质泛素化修饰的差异分析[J]. 畜牧兽医学报, 2019(11):2290-2301. |
[10] |
Downes B P, Stupar R M, Gingerich D J, et al. The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development[J]. Plant Journal, 2003,35(6):729-742.
URL pmid: 12969426 |
[11] |
Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology, 2004,55:555-590.
doi: 10.1146/annurev.arplant.55.031903.141801 URL pmid: 15377232 |
[12] |
Mazzucotelli E, Belloni S, Marone D, et al. The e3 ubiquitin ligase gene family in plants: regulation by degradation[J]. Current Genomics, 2006,7(8):509-522.
URL pmid: 18369404 |
[13] | Vierstra R D. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature Review Molecular Cell Biology, 2009,10(6):385-397. |
[14] |
Stone S L, Callis J. Ubiquitin ligases mediate growth and development by promoting protein death[J]. Current Opinion Plant Biology, 2007,10(6):624-632.
doi: 10.1016/j.pbi.2007.07.010 URL |
[15] | Yang L, Miao M, Lyu H, et al. Genome-Wide Identification, Evolution, and Expression Analysis of RING Finger Gene Family in Solanum lycopersicum[J]. International Journal of Molecular Science, 2019,20(19):4864. |
[16] | Hatakeyama S, Nakayama K I. U-box proteins as a new family of ubiquitin-protein ligases[J]. Journal of Biololical Chemistry, 2001,276(35):33111-33120. |
[17] | Marín I. Diversification and Specialization of Plant RBR Ubiquitin Ligases[J]. PLoS One, 2010,5(7):11579. |
[18] |
Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development[J]. Plant Cell, 2004,16(12):3181-3195.
URL pmid: 15579807 |
[19] | Eloy N B, Gonzalez N, Van Leene J, et al. SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization[J]. Proceedings of National Academy Sciences, 2012,109(34):13853-13858. |
[20] |
Furniss J J, Grey H, Wang Z, et al. Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity[J]. PLoS Pathogens, 2018,14(11):e1007447.
doi: 10.1371/journal.ppat.1007447 URL |
[21] | 田爱梅, 于晖, 曹家树. 植物E3泛素连接酶的分类与功能[J]. 中国细胞生物学学报, 2020,42(5):907-915. |
[22] | 刘志敏, 柏斗胜, 张弛, 等. HECT型E3泛素连接酶在肿瘤中作用的研究现状和进展[J]. 国际外科学杂志, 2020(2):135-138. |
[23] |
Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates[J]. Journal of Experimental Botany, 2009,60(4):1109-2111.
doi: 10.1093/jxb/ern369 URL pmid: 19196749 |
[24] |
Stone S L, Hauksdóttir H, Troy A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiology, 2005,137(1):13-30.
doi: 10.1104/pp.104.052423 URL pmid: 15644464 |
[25] |
Spratt D E, Walden H, Shaw G S. RBR E3 ubiquitin ligases: new structures, new insights, new questions[J]. Biochemical Journal, 2014,458(3):421-437.
doi: 10.1042/BJ20140006 URL |
[26] |
Leung J, Giraudat J. Abscisic Acid Signal Transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:199-222.
doi: 10.1146/annurev.arplant.49.1.199 URL pmid: 15012233 |
[27] |
Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports, 2013,32(7):959-970.
doi: 10.1007/s00299-013-1418-1 URL pmid: 23535869 |
[28] | Zhao J, Zhao L, Zhang M, et al. Arabidopsis E3 Ubiquitin Ligases PUB22 and PUB23 Negatively Regulate Drought Tolerance by Targeting ABA Receptor PYL9 for Degradation[J]. International Journal of Molecular Sciences, 2017,18(9):1841. |
[29] | Zhang Y Y, Li Y, Gao T, et al. Arabidopsis SDIR1 enhances drought tolerance in crop plants[J]. Bioscience Biotechnology Biochemistry, 2008,72(8):2251-2254. |
[30] |
Zhang Y, Yang C, Li Y, et al. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis[J]. Plant Cell, 2007,19(6):1912-1929.
doi: 10.1105/tpc.106.048488 URL pmid: 17573536 |
[31] |
Zhang H, Cui F, Wu Y, et al. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis[J]. Plant Cell, 2015,27(1):214-227.
doi: 10.1105/tpc.114.134163 URL pmid: 25616872 |
[32] | Yang L, Liu Q, Liu Z, et al. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling[J]. Journal of Integrayive Plant Biology, 2016,58(1):67-80. |
[33] |
Park Y C, Choi S Y, Kim J H, et al. Molecular Functions of Rice Cytosol-Localized RING Finger Protein 1 in Response to Salt and Drought and Comparative Analysis of Its Grass Orthologs[J]. Plant and Cell Physiology, 2019,60(11):2394-2409.
doi: 10.1093/pcp/pcz133 URL pmid: 31292649 |
[34] | 段瑞君, 王爱东, 陈国雄. 植物角质层基因研究进展[J]. 植物学报, 2017,52(5):637-651. |
[35] |
Wang Z, Tian X. The E3 Ligase DROUGHT HYPERSENSITIVE Negatively Regulates Cuticular Wax Biosynjournal by Promoting the Degradation of Transcription Factor ROC4 in Rice[J]. Plant Cell, 2018,30(1):228-244.
URL pmid: 29237723 |
[36] |
Mattila H, Valev D, Havurinne V, et al. Degradation of chlorophyll and synjournal of flavonols during autumn senescence-the story told by individual leaves[J]. AoB Plants, 2018,10(3):ply028.
URL pmid: 29765587 |
[37] |
Raddatz N, Morales de Los Ríos L, Lindahl M, et al. Coordinated Transport of Nitrate, Potassium, and Sodium[J]. Frontiers in Plant Science, 2020,11:247.
URL pmid: 32211003 |
[38] |
Wang J, Liu S, Liu H, et al. PnSAG1, an E3 ubiquitin ligase of the Antarctic moss Pohlia nutans, enhanced sensitivity to salt stress and ABA[J]. Plant Physiology Biochemistry, 2019,141:343-352.
doi: 10.1016/j.plaphy.2019.06.002 URL pmid: 31207495 |
[39] |
Zhang M, Zhang G Q, Kang H H, et al. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana[J]. Plant Cell Physiology, 2017,58(10):1673-1688.
doi: 10.1093/pcp/pcx101 URL pmid: 29016965 |
[40] |
Wang W, Wang W, Wu Y, et al. The involvement of wheat (Triticum aestivum L.) U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance[J]. Journal of Integrative Plant Biology, 2019,62(5).
doi: 10.1111/jipb.12813 URL pmid: 30941890 |
[41] |
Tian M, Lou L, Liu L, et al. The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana[J]. Plant Journal, 2015,82(1):81-92.
doi: 10.1111/tpj.12797 URL pmid: 25704231 |
[42] | Hwang S G, Kim J J, Lim S D, et al. Molecular dissection of Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress[J]. Physiological Plantarum, 2016,158(2):168-179. |
[43] |
Chapagain S, Park Y C, Kim J H, et al. Oryza sativa salt-induced RING E3 ligase 2 (OsSIRP2) acts as a positive regulator of transketolase in plant response to salinity and osmotic stress[J]. Planta, 2018,247(4):925-939.
doi: 10.1007/s00425-017-2838-x URL pmid: 29285618 |
[44] | Park Y C, Lim S D, Moon J C, et al. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins[J]. Plant Cell Environment, 2019,42(11):3061-3076. |
[45] | Min H J, Jung Y J, Kang B G, et al. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)[J]. Moleculars and Cells, 2016,39(3):250-257. |
[46] |
Cho S K, Chung H S, Ryu M Y, et al. Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog[J]. Plant Physiology, 2006,142(4):1664-1682.
doi: 10.1104/pp.106.087965 URL pmid: 17041029 |
[47] |
Fang H, Meng Q, Xu J, et al. Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice[J]. Plant Molecular Biology, 2015,87(4-5):441-458.
URL pmid: 25667045 |
[48] |
Kim S J, Kim W T. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress[J]. FEBS Letters, 2013,587(16):2584-2590.
doi: 10.1016/j.febslet.2013.06.038 URL pmid: 23831064 |
[49] |
Suh J Y, Kim S J, Oh T R, et al. Arabidopsis Toxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress[J]. Biochemical and Biophysical Research Communications, 2016,469(1):8-14.
doi: 10.1016/j.bbrc.2015.11.061 URL pmid: 26612255 |
[50] |
Peng L, Wan X, Huang K, et al. AtPUB48 E3 ligase plays a crucial role in the thermotolerance of Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2019,509(1):281-286.
doi: 10.1016/j.bbrc.2018.12.123 URL pmid: 30591216 |
[51] |
Kim J H, Lim S D, Jang C S. Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress[J]. Plant molecular biology, 2019,99(6):545-559.
doi: 10.1007/s11103-019-00835-9 URL pmid: 30730020 |
[52] | Li Q, Wang W. Wheat F-Box Protein Gene TaFBA1 Is Involved in Plant Tolerance to Heat Stress[J]. Frontiers Plant Science, 2018,9:521. |
[53] |
Kang H, Zhang M, Zhou S, et al. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon[J]. Plant Science, 2016,248:102-115.
doi: 10.1016/j.plantsci.2016.04.015 URL pmid: 27181952 |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | Xie Daolong, Tang Zhi, Li Hongye, Fu Xiaoxia, Wang Fan, Liu Xiaoxia, Qin Zuodong, He Fulin, Luo Ying. GbASR gene from Ginkgo biloba: Cloning, Bioinformatics and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 34-41. |
[3] | Hao Xiaocong, Wang Weiwei, Zhang Fengting, Sun Rui, Fang Zhaofeng, Liu Shan, Cao Zhishen, Zhu Wengen, Zhao Changping, Wang Dezhou, Tang Yimiao. TaHPPR Gene in Wheat: Cloning and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 129-138. |
[4] | Ma Yue, Yu Bing. nsLTPs Genes Involved in Plant Response to Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 95-101. |
[5] | Dong Chunyan, Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen. Plant Lipoxygenases: Advance of the Function in Stress Response [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 102-107. |
[6] | Zou Fengkang, Jia Hailun, Ding Guangzhou, Chen Li. Phosphatidylinositol Transporters Gene SbSEC14 C in Sugarbeet: Cloning and Expression Analysis Under Low Temperature Stress [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 39-48. |
[7] | Zhang Jialin, Li Haiying. Ubiquitin Modification and Its Research Progress in Plant Proteomics [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 75-81. |
[8] | Liu Jingyan, Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing. Low Temperature Tolerance of Rice: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 1-5. |
[9] | Wang Yixi, Yu Bingwei, Yan Shuangshuang, Qiu Zhengkun, Chen Changming, Lei Jianjun, Tian Shibing, Cao Bihao. Advances in Research on Plant Ubiquitin Genes [J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 14-22. |
[10] | Wang Qiong, Guo Yijing, Kang Lin, Zhang Shaoying, Yu Youwei, Song Xiaoqing. Physiological and Biochemical Functions of CO in Plant: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 86-90. |
[11] | . Development of Virus Induced Gene Silencing and Application of VIGS in Plant Abiotic Stresses [J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 131-136. |
[12] | Hu Maolong,Long Weihua,Gao Jianqin,Zhang Jiefu,Chen Song and Pu Huiming. Cloning and Expression of BnSTO Encoding B-box-type Zinc-finger Proteins in Rapeseed [J]. Chinese Agricultural Science Bulletin, 2016, 32(36): 96-103. |
[13] | Dai Shuyuan,Li Wei,Ren Zuohua and Liu Erming. Function of Plant U-box Protein in Plant Innate Immunity and Its Research Progress [J]. Chinese Agricultural Science Bulletin, 2016, 32(14): 56-61. |
[14] | Zhang Jiyu,Wang Gang,Huang Shengnan,Xuan Jiping,Jia Xiaodong and Guo Zhongren. Functions of Alcohol Dehydrogenase Family in Abiotic Stress Responses in Plants [J]. Chinese Agricultural Science Bulletin, 2015, 31(10): 246-250. |
[15] | . Research Progress on Plant Germin-like Proteins [J]. Chinese Agricultural Science Bulletin, 2014, 30(30): 246-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||