Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (17): 87-93.doi: 10.11924/j.issn.1000-6850.casb2020-0500
Special Issue: 资源与环境
Previous Articles Next Articles
Wu Jinlan(), Lu Chenying, Wu Mingjiang, Tong Haibin(
)
Received:
2020-09-25
Revised:
2021-01-29
Online:
2021-06-15
Published:
2021-06-29
Contact:
Tong Haibin
E-mail:3250314463@qq.com;tonghaibin@gmail.com
CLC Number:
Wu Jinlan, Lu Chenying, Wu Mingjiang, Tong Haibin. The Application of Model Organisms Drosophila melanogaster to the Toxicology of Water Environment Pollutants: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 87-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0500
[1] |
Anet A, Olakkaran S, Kizhakke P A. et al. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster[J]. Journal of Hazardous Materials, 2019,370:42-53.
doi: 10.1016/j.jhazmat.2018.07.050 URL |
[2] | 张金平.果蝇: 小昆虫的大成就[J]. 农药市场信息, 2019(14):67-68. |
[3] |
Cansaran-duman D, Atakol O, Aras S. Assessment of air pollution genotoxicity by RAPD in evernia prunastri L. Ach. from around iron-steel factory in Karabük, Turkey[J]. Journal of Environmental Sciences, 2011,23(7):1171-1178.
doi: 10.1016/S1001-0742(10)60505-0 URL |
[4] |
Oldham S. Obesity and nutrient sensing TOR pathway in flies and vertebrates: Functional conservation of genetic mechanisms[J]. Trends in Endocrinology and Metabolism, 2011,22(2):45-52.
doi: 10.1016/j.tem.2010.11.002 URL |
[5] | Yamaguchi M, Yoshida H. Drosophila as a model organism[J]. Advances in Experimental Medicine and Biology, 2018,1076:1-10. |
[6] |
Kumar J P. The fly eye: Through the looking glass[J]. Developmental Dynamics, 2018,247(1):111-123.
doi: 10.1002/dvdy.v247.1 URL |
[7] |
Ramírez N, Cuadras A, Rovira E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site[J]. Environment International, 2012,39(1):200-209.
doi: 10.1016/j.envint.2011.11.002 URL |
[8] |
Wang F, Li C, Liu W, et al. Potential mechanisms of neurobehavioral disturbances in mice caused by sub-chronic exposure to low-dose VOCs[J]. Inhalation Toxicology, 2014,26(4):250-258.
doi: 10.3109/08958378.2014.882447 pmid: 24568580 |
[9] |
Wang F, Li C, Liu W, et al. Effect of exposure to volatile organic compounds (VOCs) on airway inflammatory response in mice[J]. The Journal of Toxicological Sciences, 2012,37(4):739-748.
doi: 10.2131/jts.37.739 URL |
[10] |
JImi S, Uchiyama M, Takaki A, et al. Mechanisms of cell death induced by cadmium and arsenic[J]. Annals of the New York Academy of Sciences, 2004,1011:325-331.
doi: 10.1196/annals.1293.032 URL |
[11] | Piper M D, Partridge L. Protocols to study aging in drosophila[J]. Methods in Molecular Biology, 2016,1478:291-320. |
[12] |
Doganlar O, Doganlar ZB, Tabakcioglu K. Effects of permissible maximum-contamination levels of VOC mixture in water on total DNA, antioxidant gene expression, and sequences of ribosomal DNA of Drosophila melanogaster[J]. Environmental Science and Pollution Research International, 2015,22(20):15610-15620.
doi: 10.1007/s11356-015-4741-y pmid: 26018283 |
[13] |
Mahendra P S, Ram K R, Mishra M, et al. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers[J]. Chemosphere, 2010,79(5):577-587.
doi: 10.1016/j.chemosphere.2010.01.054 pmid: 20188393 |
[14] |
Singh M P, Mishra M, Sharma A, et al. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin[J]. Toxicology and Applied Pharmacology, 2011,253(1):14-30.
doi: 10.1016/j.taap.2011.03.006 URL |
[15] |
Ordaz J D, Damayanti N P, Irudayaraj J M K. Toxicological effects of trichloroethylene exposure on immune disorders[J]. Immunopharmacol Immunotoxicol, 2017,39(6):305-317.
doi: 10.1080/08923973.2017.1364262 URL |
[16] |
Luo Y S, Hsieh N H, Soldatow V Y, et al. Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains[J]. Toxicology, 2018,409:33-43.
doi: 10.1016/j.tox.2018.07.012 URL |
[17] |
Abolaji A O, Babalola O V, Adegoke A K, et al. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster[J]. Environmental Toxicology and Pharmacology, 2017,55:202-207.
doi: 10.1016/j.etap.2017.08.038 URL |
[18] |
Zhang R L, Zhang R J, Zou S C, et al. Occurrence, distribution and ecological risks of fluoroquinolone antibiotics in the Dongjiang river and the Beijiang river, Pearl River Delta, south China[J]. Bulletin of Environmental Contamination and Toxicology, 2017,99(1):46-53.
doi: 10.1007/s00128-017-2107-5 URL |
[19] |
Zivna D, Plhalova L, Chromcova L, et al. The effects of ciprofloxacin on early life stages of common carp (Cyprinus carpio)[J]. Environmental Toxicology and Chemistry, 2016,35(7):1733-1740.
doi: 10.1002/etc.3317 pmid: 26632160 |
[20] |
Bennett A C, Bennett C L, Witherspoon B J, et al. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/dissections disseminated by the Food and Drug Administration and the European Medicines Agency[J]. Expert Opinion on Drug Safety, 2019,18(11):1055-1063.
doi: 10.1080/14740338.2019.1665022 pmid: 31500468 |
[21] |
Aslan N, Büyükgüzel E, Büyükgüzel K. Oxidative effects of gemifloxacin on some bological traits of Drosophila melanogaster (Diptera: Drosophilidae)[J]. Environmental Entomology, 2019,48(3):667-673.
doi: 10.1093/ee/nvz039 URL |
[22] |
Liu J, Li X, Wang X. Toxicological effects of ciprofloxacin exposure to Drosophila melanogaster[J]. Chemosphere, 2019,237:124542.
doi: 10.1016/j.chemosphere.2019.124542 URL |
[23] |
Bidell M R, Lodise T P. Fluoroquinolone-associated tendinopathy: Does levofloxacin pose the greatest risk?[J]. Pharmacotherapy, 2016,36(6):679-693.
doi: 10.1002/phar.2016.36.issue-6 URL |
[24] |
Al-momani F A, Massadeh A M. Effect of different heavy-metal concentrations on Drosophila melanogaster larval growth and development[J]. Biological Trace Element Research, 2005,108(1-3):271-277.
doi: 10.1385/BTER:108:1-3 URL |
[25] |
Nguyen A H, Altomare L E, Mcelwain M C. Decreased accumulation of cadmium in Drosophila selected for resistance suggests a mechanism independent of metallothionein[J]. Biological Trace Element Research, 2014,160(2):245-249.
doi: 10.1007/s12011-014-0037-1 URL |
[26] |
Giaginis C, Gatzidou E, Theocharis S. DNA repair systems as targets of cadmium toxicity[J]. Toxicology and Applied Pharmacology, 2006,213(3):282-290.
doi: 10.1016/j.taap.2006.03.008 URL |
[27] |
Kopera E, Schwerdtle T, Hartwig A, et al. Co (II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity[J]. Chemical Research in Toxicology, 2004,17(11):1452-1458.
doi: 10.1021/tx049842s URL |
[28] |
Hu X Y, Fu W L, Yang X G, et al. Effects of cadmium on fecundity and defence ability of Drosophila melanogaster[J]. Ecotoxicology and Environmental Safety, 2019,171:871-877.
doi: 10.1016/j.ecoenv.2019.01.029 URL |
[29] |
Bixler A, Schnee F B. The effects of the timing of exposure to cadmium on the oviposition behavior of Drosophila melanogaster[J]. Biometals, 2018,31(6):1075-1080.
doi: 10.1007/s10534-018-0148-9 URL |
[30] |
Abdulrazzaq A M, Mohd H, Wahid H A, et al. The detrimental effects of lead on human and animal health[J]. Veterinary World, 2016,9(6):660-671.
doi: 10.14202/vetworld.2016.660-671 pmid: 27397992 |
[31] |
Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014,7(2):60-72.
doi: 10.2478/intox-2014-0009 URL |
[32] |
Nanda K P, Kumari C, Dubey M, et al. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster[J]. Chemosphere, 2019,236:124349.
doi: 10.1016/j.chemosphere.2019.124349 URL |
[33] |
Prince L M, Aschner M, Bowman A B. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury[J]. BBA - General Subjects, 2019,1863(12):129300.
doi: 10.1016/j.bbagen.2019.02.002 URL |
[34] |
Leão M B, Wagner C, Lugokenski T H, et al. Methylmercury and diphenyl diselenide interactions in Drosophila melanogaster: effects on development, behavior and Hg levels[J]. Environmental Science and Pollution Research, 2018,25(22):21568-21576.
doi: 10.1007/s11356-018-2293-7 URL |
[35] |
Liu Y, Ji J, Zhang W, et al. Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats[J]. Ecotoxicology and Environmental Safety, 2019,185:109720.
doi: 10.1016/j.ecoenv.2019.109720 URL |
[36] |
Dabool L, Juravlev L, Kurant E, et al. Modeling parkinson's disease in adult Drosophila[J]. Journal of Neuroscience Methods, 2019,311:89-94.
doi: S0165-0270(18)30326-1 pmid: 30336223 |
[37] |
Cutler T, Sarkar A, Moran M, et al. Drosophila eye model to study neuroprotective role of CREB binding protein (CBP) in alzheimer's disease[J]. PLoS One, 2015,10(9):e0137691.
doi: 10.1371/journal.pone.0137691 URL |
[38] |
Dubowy C, Sehgal A. Circadian rhythms and sleep in Drosophila melanogaster[J]. Genetics, 2017,205(4):1373-1397.
doi: 10.1534/genetics.115.185157 URL |
[39] |
Donlea J M. Roles for sleep in memory: insights from the fly[J]. Current Opinion in Neurobiology, 2019,54:120-126.
doi: 10.1016/j.conb.2018.10.006 URL |
[40] |
Cappelletti S, Piacentino D, Fineschi V, et al. Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature[J]. Critical Reviews in Toxicology, 2019,49(4):329-341.
doi: 10.1080/10408444.2019.1621262 pmid: 31433682 |
[41] |
Capo F, Wilson A, Di C F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans[J]. Microorganisms, 2019,7(9):336.
doi: 10.3390/microorganisms7090336 URL |
[42] |
Chen Z, Wu X C, Luo H J, et al. Acute exposure of mercury chloride stimulates the tissue regeneration program and reactive oxygen species production in the Drosophila midgut[J]. Environmental Toxicology and Pharmacology, 2016,41:32-38.
doi: 10.1016/j.etap.2015.11.009 pmid: 26650796 |
[43] |
Cicatelli A, Castiglione S. A step forward in tree physiological research on soil copper contamination[J]. Tree Physiology, 2016,36(4):403-406.
doi: 10.1093/treephys/tpw014 pmid: 27009117 |
[44] |
Cruces S A, Rodríguez A I, Herbello H P, et al. Copper ncreases brain oxidative stress and enhances the ability of 6-hydroxydopamine to cause dopaminergic degeneration in a rat model of parkinson's disease. Mol Neurobiol[J]. Molecular neurobiology, 2019,56(4):2845-2854.
doi: 10.1007/s12035-018-1274-7 URL |
[45] |
Brewer G J. Avoiding Alzheimer's disease: The important causative role of divalent copper ingestion[J]. Experimental Biology and Medicine, 2019,244(2):114-119.
doi: 10.1177/1535370219827907 URL |
[46] |
Balamurugan K, Egli D, Hua H, et al. Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance[J]. The EMBO journal, 2007,26(4):1035-1044.
doi: 10.1038/sj.emboj.7601543 URL |
[47] |
Klimaczewski C V, Ecker A, Piccoli B, et al. Peumus boldus attenuates copper-induced toxicity in Drosophila melanogaster[J]. Biomedicine & Pharmacotherapy, 2018,97:1-8.
doi: 10.1016/j.biopha.2017.09.130 URL |
[48] |
Zamberlan D C, Halmenschelager P T, Silva L F O, et al. Copper decreases associative learning and memory in Drosophila melanogaster[J]. The Science of the Total Environment, 2020,710:135306.
doi: S0048-9697(19)35298-2 pmid: 31926406 |
[49] |
Hosmer A J, Schneider S Z, Anderson J C, et al. Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2017,36(9):2327-2334.
doi: 10.1002/etc.3769 pmid: 28198566 |
[50] |
Delcorso M C, Matheus V A, Arana S. Acute toxicity of commercial atrazine in Piaractus mesopotamicus: Histopathological, ultrastructural, molecular, and genotoxic evaluation[J]. Veterinary World, 2017,10(9):1008-1019.
doi: 10.14202/vetworld. URL |
[51] |
Lin Z, Roede J R, He C, et al. Short-term oral atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts α-linolenate, tryptophan, tyrosine and other major metabolic pathways[J]. Toxicology, 2014,326:130-141.
doi: 10.1016/j.tox.2014.11.001 URL |
[52] |
Karrow N A, Mccay J A, Brown R D, et al. Oral exposure to atrazine modulates cell-mediated immune function and decreases host resistance to the B16F10 tumor model in female B6C3F1 mice[J]. Toxicology, 2005,209(1):15-28.
pmid: 15725510 |
[53] | Figueira F H, Aguiar L M, Rosa C E. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster[J]. Comparative Biochemistry and Physiology, Part C, 2017,191:78-85. |
[54] | Figueira F H, Quadros O N, Aguiar L M, et al. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster[J]. Comparative Biochemistry and Physiology, Part C, 2017,202:94-102. |
[55] |
Gao B, Bian X, Mahbub R, et al. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions[J]. Environment Health Perspect, 2017,125(2):198-206.
doi: 10.1289/EHP202 URL |
[56] | Chaudhuri A, Johnson R, Rakshit K, et al. Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling[J]. Chemosphere, 2020,248:37-48. |
[57] | Aguiar L M, Figueira F H, Gottschalk MS, et al. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster[J]. Comparative Biochemistry and Physiology, Part C, 2016,185:94-101. |
[58] |
Li X Q, Liu J, Wang X. Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster[J]. Journal of Hazardous Materials, 2020,384:121419.
doi: 10.1016/j.jhazmat.2019.121419 URL |
[59] |
Raszl S M, Froelich B A, Vieira C R, et al. Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections[J]. Journal of Applied Microbiology, 2016,121(5):1201-1222.
doi: 10.1111/jam.13246 pmid: 27459915 |
[60] |
Li L Z, Meng H, Gu D, et al. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis[J]. Microbiological Research, 2019,222:43-51.
doi: 10.1016/j.micres.2019.03.003 URL |
[61] |
Royet J. Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster[J]. Cellular and Molecular Life Sciences, 2011,68(22):3651-3660.
doi: 10.1007/s00018-011-0828-x URL |
[62] | Luo L, Matthews J D, Robinson BS, et al. Vibrio parahaemolyticus VopA is a potent inhibitor of cell migration and apoptosis in the intestinal epithelium of Drosophila melanogaster[J]. Infection and Immunity, 2019,87(3):e00669-18. |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | BAO Guangling, TAO Ronghao, YANG Qingbo, HU Hanxiu, LI Ding, MA Youhua. Microbial Remediation of Heavy Metal Pollution in Farmland Soil: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 69-74. |
[3] | SUN Yangcun, YIN Ziliang, GE Jingping. Accumulation of Heavy Metal Pollutants in Soil: Sources and Treatment Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 75-79. |
[4] | MA Biao, LIU Xuelu, NIAN Lili, LI Liangliang, YANG Yingbo. A Bibliometric Analysis of Research Trends in Soil Remediation from 2011 to 2020 [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 143-151. |
[5] | ZHANG Bo, SHI Feng, SONG Fuqiang. AMF Complex Fungicides: Effects on Photosynthesis and Growth of Rice in Cold Region [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 15-22. |
[6] | HUANG Yajie, CUI Yanzhi, Jia Xiaomei, YU Qi. Pollution Trend and Prevention Measures of Livestock and Poultry Breeding in Ningxia During the 14th Five-Year Plan Period [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 78-85. |
[7] | GAO Linlin, WANG Chensisi, ZHANG Ning, HU Hanxiu, MA Youhua. Effect of Lime Application with Organic Materials on Soil Cadmium Form in Rice-wheat Rotation Fields [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 81-86. |
[8] | ZHENG Shenghua, CHEN Shanghong, CHEN Honglin, YANG Zepeng, AO Yuqin, LIU Dinghui. Agricultural Non-point Source Pollution Analysis and Prevention and Control Technologies in Northwest Sichuan Plateau -- A Case Study on Aba Tibetan and Qiang Autonomous Prefecture [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 60-65. |
[9] | GUAN Hongyou. Bibliometric Analysis and Visual Expression of Research on Soil Pollution Prevention and Control [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 133-138. |
[10] | ZHANG Qi, LIU Haitao, TIAN Jing, YAO Li, WANG Hong, LIN Chaowen. Effects of Tillage Methods on Heavy Metal Cadmium Accumulation in Rice-Wheat Rotation System in Chengdu Plain [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 109-113. |
[11] | ZHENG Shenghua, CHEN Shanghong, CHEN Honglin, WAN Kejun, AO Yuqin, LIU Dinghui. The Development Path of Ecological Circular Agriculture in Eastern Sichuan Hilly Areas: A Case of the Resource Utilization Model of Farming and Breeding Waste in Pengxi County of Sichuan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 95-99. |
[12] | GUO Jia, JIN Shaofei, WANG Ku. Spatial Distribution Characteristics and the Impact Factors of Heavy Metals in Peri-urban Soils Under the Background of Fast Urbanization [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 103-109. |
[13] | WANG Zhiqiang, SONG Shengbang, XIAO Tao, WEN Yi, ZENG Ming, LI Jun. Current Situation, Prevention and Control Dilemma and Countermeasures of Agricultural and Rural Water Pollution in Jiujiang [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 148-155. |
[14] | SONG Yun, FAN Ping, WANG Min, LI Hongmei, CAO Zhihong, HAN Wei. Current Situation, Risk and Prevention Countermeasures of Mulching Film Residues in Binzhou, Shandong [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 104-109. |
[15] | TIAN Junlin, HAO Shouning. Research Progress of Non-point Source Pollution Estimation Model [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 111-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||