Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (28): 68-75.doi: 10.11924/j.issn.1000-6850.casb2020-0756
Special Issue: 土壤重金属污染
Previous Articles Next Articles
Mao Yizhi1,2,3(), Cai Baiyan1,2,3(
)
Received:
2020-12-07
Revised:
2021-03-18
Online:
2021-10-05
Published:
2021-10-28
Contact:
Cai Baiyan
E-mail:973194335@qq.com;caibaiyan@126.com
CLC Number:
Mao Yizhi, Cai Baiyan. The Temporal and Spatial Distribution and Environmental Behavior of Antibiotic Pollution in Soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 68-75.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0756
[1] |
Finlay A C, Hobby G L, P’An S Y, et al. Terramycin, a New Antibiotic[J]. Science, 1950, 111:85.
doi: 10.1126/science.111.2874.85.b URL |
[2] |
Witte W. BIOMEDICINE: Medical Consequences of Antibiotic Use in Agriculture[J]. Science, 1998, 279:996-997.
pmid: 9490487 |
[3] | Lemon K P, Armitage G C, Relman D A, et al. Microbiota-Targeted Therapies: An Ecological Perspective[J]. Science translational medicine, 2012, 4:135-137. |
[4] |
Laxminarayan R. Antibiotic effectiveness: Balancing conservation against innovation[J]. Science, 2014, 345:1299-1301.
doi: 10.1126/science.1254163 pmid: 25214620 |
[5] |
Levin Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355:826-830.
doi: 10.1126/science.aaj2191 pmid: 28183996 |
[6] |
Park J, Gasparrini A J, Reck M R, et al. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes[J]. Nature chemical biology, 2017, 13(7):730-736.
doi: 10.1038/nchembio.2376 URL |
[7] |
Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions[J]. Nature, 2017, 544:65-70.
doi: 10.1038/nature21725 URL |
[8] | 赵方凯, 杨磊, 乔敏, 等. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 2017, 49(3):428-436. |
[9] | Meredith H R, Andreani V, Ma H R, et al. Applying ecological resistance and resilience to dissect bacterial antibiotic responses[J]. Science Advances, 2018, 4(12):u1873. |
[10] |
Lázár V, Martins A, Spohn R, et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides[J]. Nature Microbiology, 2018, 3(6):718-731.
doi: 10.1038/s41564-018-0164-0 URL |
[11] | Zampieri M, Szappanos B, Buchieri M V, et al. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds[J]. Science translational medicine, 2018, 10:l3973. |
[12] | 赵方凯, 杨磊, 李守娟, 等. 长三角典型城郊土壤抗生素空间分布的影响因素研究[J]. 环境科学学报, 2018, 38(3):1163-1171. |
[13] | 张宁, 李淼, 刘翔. 土壤中抗生素抗性基因的分布及迁移转化[J]. 中国环境科学, 2018, 38(7):2609-2617. |
[14] | 张步迪, 林青, 曹东平, 等. 磺胺嘧啶在土壤及土壤组分中的吸附/解吸动力学[J]. 土壤, 2018, 50(5):949-957. |
[15] | 常旭卉, 贾书刚, 王淑平, 等. 粪源环丙沙星对潮土中抗生素抗性基因的影响[J]. 农业环境科学学报, 2018, 37(12):2727-2737. |
[16] | 秦俊梅, 熊华烨, 李兆君. 施用含四环素类抗生素鸡粪对玉米生长的影响及其残留特征[J]. 灌溉排水学报, 2018, 37(9):22-28. |
[17] | 熊华烨, 秦俊梅, 马浩天. 含土霉素土壤添加不同基质后对玉米生理特性的影响[J]. 水土保持学报, 2018, 32(2):283-289. |
[18] | 方媛瑗, 丁惠君. 抗生素的生态毒性效应研究进展[J]. 环境科学与技术, 2018, 41(5):102-110. |
[19] | 王畅, 李余杰, 张智, 等. 氟喹诺酮类抗生素在农业紫色土中的吸附研究[J]. 土壤, 2018, 50(5):958-964. |
[20] | 邹勇, 黄蔚虹, 陈永杰, 等. 金霉素胁迫下室内粪土模型中菌群多样性与四环素类抗生素耐药基因丰度研究[J]. 华南农业大学学报, 2018, 39(5):65-73. |
[21] | 李秀文, 何益得, 张巍, 等. 磺胺类抗生素对水环境的污染及生态毒理效应[J]. 环境科学与技术, 2018, 41(S1):62-67. |
[22] | Zou S, Wang Y, Zhang J, et al. Analysis of Physical and Chemical Properties of Antibiotic Bacterial Residue[J]. Environmental Science & Technology, 2018. |
[23] | Archundia D, Boithias L, Duwig C, et al. Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano): Application of the GREAT-ER model[J]. Science of the Total Environment, 2018, 622:1046-1055. |
[24] |
Boy Roura M, Mas-Pla J, Petrovic M, et al. Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer(NE Catalonia, Spain)[J]. The Science of the total environment, 2018, 612:1387-1406.
doi: S0048-9697(17)32354-9 pmid: 28898946 |
[25] |
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria[J]. Nature, 2018, 555:623-628.
doi: 10.1038/nature25979 URL |
[26] |
Pansa P, Hsia Y, Bielicki J, et al. Evaluating Safety Reporting in Paediatric Antibiotic Trials, 2000-2016: A Systematic Review and Meta-Analysis[J]. Drugs, 2018, 78:231-244.
doi: 10.1007/s40265-017-0850-x URL |
[27] |
Pan M, Chu L M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China[J]. The Science of the Total Environment, 2018, 624:145-152.
doi: 10.1016/j.scitotenv.2017.12.008 URL |
[28] |
Guo Xinyan, Yan Zheng, Zhang Yi, et al. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2018, 612:119-128.
doi: 10.1016/j.scitotenv.2017.08.229 URL |
[29] |
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance[J]. Trends in microbiology, 2018, 26(8):677-691.
doi: 10.1016/j.tim.2018.01.005 URL |
[30] |
Zeng Q, Sun J, Zhu L. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China[J]. Chemosphere, 2019, 224:900-909.
doi: 10.1016/j.chemosphere.2019.02.167 URL |
[31] | Pärnänen K M M, Narciso-da-Rocha C, Kneis D, et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence[J]. Science Advances, 2019, 5(3):u9124. |
[32] |
Nyström M, Jouffray J B, Norström A V, et al. Anatomy and resilience of the global production ecosystem[J]. Nature, 2019, 575:98-108.
doi: 10.1038/s41586-019-1712-3 URL |
[33] |
Luther A, Urfer M, Zahn M, et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria[J]. Nature, 2019, 576:452-458.
doi: 10.1038/s41586-019-1665-6 URL |
[34] | Van Boeckel T P, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries[J]. Science, 2019, 365:w1944. |
[35] | 孔晨晨, 张世文, 聂超甲, 等. 农用地土壤抗生素组成特征与积累规律[J]. 环境科学, 2019, 40(4):463-471. |
[36] | 赵远超, 武俊, 胡锋, 等. 生物质炭与噬菌体联用阻控与灭活土壤-生菜体系中抗生素抗性致病细菌[J]. 土壤, 2019, 51(5):942-948. |
[37] | 彭聪, 巴俊杰, 胡芬, 等. 广西会仙岩溶湿地典型抗生素污染特征及生态风险评估[J]. 环境科学学报, 2019, 39(7):2207-2217. |
[38] | 吴迎, 冯朋雅, 李荣, 等. 环境抗生素污染的微生物修复进展[J]. 生物工程学报, 2019, 35(11):2133-2150. |
[39] |
Menz J, Olsson O, Kuemmerer K. Antibiotic residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment?[J]. Journal of Hazardous Materials, 2019, 379:120801-120807.
doi: 10.1016/j.jhazmat.2019.120801 URL |
[40] |
Kenyon S, Pike K, Jones D R, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour:7-year follow-up of the ORACLE II trial[J]. Lancet, 2019, 372:1319-1327.
doi: 10.1016/S0140-6736(08)61203-9 URL |
[41] |
Stewart Philip S Costertona J William. Antibiotic resistance of bacteria in biofilms[J]. The Lancet, 2019, 358:135-138.
doi: 10.1016/S0140-6736(01)05321-1 URL |
[42] |
Lau C H, Tien Y, Stedtfeld R D, et al. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements[J]. Science of the Total Environment, 2020, 727:138520.
doi: 10.1016/j.scitotenv.2020.138520 URL |
[43] |
Uddin M, Chen J, Qiao X, et al. Insight into dynamics and bioavailability of antibiotics in paddy soils by in situ soil moisture sampler[J]. Science of the Total Environment, 2020, 703:135562.
doi: 10.1016/j.scitotenv.2019.135562 URL |
[44] |
Zhao F, Chen L, Yang L, et al. Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale[J]. Environmental Pollution, 2020, 260:114112.
doi: 10.1016/j.envpol.2020.114112 URL |
[45] | McDowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world[J]. Science, 2020, 368:z9463. |
[46] | Lazzaro B P, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution[J]. Science, 2020, 368:u5480. |
[47] |
Sun H, Zhang Q, Wang R, et al. Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin[J]. Nature Communications, 2020, 11(1):5263.
doi: 10.1038/s41467-020-18939-y URL |
[48] |
Abbaspour A, Zohrabi F, Dorostkar V, et al. Remediation of an oil-contaminated soil by two native plants treated with biochar and mycorrhizae[J]. Journal of Environmental Management, 2020, 254:109755.
doi: S0301-4797(19)31473-2 pmid: 31733468 |
[49] |
Sun S, Lu C, Liu J, et al. Antibiotic resistance gene abundance and bacterial community structure in soils altered by Ammonium and Nitrate Concentrations[J]. Soil Biology and Biochemistry, 2020, 149:107965.
doi: 10.1016/j.soilbio.2020.107965 URL |
[50] | Bhagat C, Kumar M, Tyagi V K, et al. Proclivities for prevalence and treatment of antibiotics in the ambient water: a review[J]. Clean Water, 2020, 3(1):42. |
[51] |
Yu M, Li Z, Wang G, et al. Dietary supplementation with citrus extract alters the plasma parameters, circulating amino acid profiles and gene expression of small intestinal nutrient transporters in Chinese yellow-feathered broilers[J]. Journal of the Science of Food and Agriculture, 2020, 100(14):5126-5135.
doi: 10.1002/jsfa.v100.14 URL |
[52] | Hernando-Amado S, F Sanz-García, JL Martínez. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants[J]. Science Advances, 2020, 6(32):eaba5493. |
[53] | Baquero F, Levin B R. Proximate and ultimate causes of the bactericidal action of antibiotics[J]. Nature Reviews Microbiology, 2020. |
[54] |
Wilson D N, Hauryliuk V, Atkinson G C, et al. Target protection as a key antibiotic resistance mechanism[J]. Nature Reviews Microbiology, 2020, 18(11):637-648.
doi: 10.1038/s41579-020-0386-z URL |
[55] | 安博宇, 袁园园, 黄玲利, 等. 头孢菌素类药物在环境中的行为及残留研究进展[J]. 中国抗生素杂志, 2020(6). |
[56] | Zainab Syeda Maria, Junai Muhammad, Xu Nan, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Research, 2020, 187. |
[57] |
Sun Y, Guo Y, Shi M, et al. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes[J]. Chemosphere, 2021, 263:128099.
doi: 10.1016/j.chemosphere.2020.128099 URL |
[58] |
Riaz M, Kamran M, Fang Y, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review[J]. Journal of Hazardous Materials, 2021, 402:123919.
doi: 10.1016/j.jhazmat.2020.123919 URL |
[1] | JIN Meijuan, SHE Xudong, SHEN Mingxing, LU Changying, TAO Yueyue, WANG Haihou. Production Effect of Strawberry Cultured by Constructing Ridge-type Soil Groove Coupling Substrate in Paddy Field [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 71-76. |
[2] | CUI Yingying, ZHOU Bo, CHEN Yiyong, LIU Jiayu, LI Jianlong, TANG Hao, TANG Jinchi. Spatial-temporal Variation Analysis and Comprehensive Evaluation of Soil Fertility in Guangdong Major Tea Areas [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 85-95. |
[3] | SUN Shuqing, DING Wei, SUN Rui, ZHANG Xicai, LAN Guoyu, CHEN Wei, YANG Chuan, WU Zhixiang. Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 93-100. |
[4] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[5] | ZENG Jie, YU Lang, DABU Xilatu, LI Yunju. Effects of Phosphorus-based Soil Conditioner on Growth of Chinese Cabbage in Low-phosphorus Red Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 81-87. |
[6] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[7] | HUANG Hao, XIE Jin, YUAN Wenbin, WANG Chuliang, CHEN Kunhua, ZENG Fandong, LIANG Zengfa, SU Zhao, WANG Wei. Effects of Different Organic Materials on Root Characteristics and Accumulation of Nitrogen, Phosphorus and Potassium in Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 51-57. |
[8] | QIN Naiqun, MA Qiaoyun, GAO Jingwei, YANG Pu, CAI Jinlan, HAO Yingchun, LI Yanmei, JI Hongce, LIAO Xiangzheng. Effects of Biogas Residue Application on Nutrient and Heavy Metal Content in Soil and Yield of Crops Under Peanut-wheat Rotation [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 58-63. |
[9] | LU Lilan, WANG Yuping, YIN Xinxing, HUANG Yingkai, FAN Haikuo. Investigation and Evaluation of Soil Nutrients in Fruit Coconut Orchards in Hainan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 72-80. |
[10] | WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87. |
[11] | ZHAO Shuangmei, LIU Xianbin, LI Hongmei, DONG Wencai, SHEN Jianping, BAO Jinmei, LIANG Fang, LU Mei. Distributional Characteristics of Soil Carbon in Moist Evergreen Broad-leaved Forest in Ailao Mountains of Yunnan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 88-95. |
[12] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[13] | ZHANG Mengjia, WEN Fangfang, ZHANG Xuelian, ZHAO Qingchun, GUO Jianming, LIAO Hong, LIU Zifei, ZHU Wen, HAN Bao, GE Yaoke, LIAO Shangqiang, LU Jing. Preliminary Construction and Application of Soil Health Assessment Method of Facility Vegetable Fields on the Field Scale [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 74-79. |
[14] | CHEN Hui, ZHOU Xiaoyue, TAN Cheng, ZHANG Yongchun, WANG Jidong, MA Hongbo. Effects of Milk Vetch Returning to Field on the Content of Soil Nutrient and Heavy Metal [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 80-85. |
[15] | CHEN Ruiying, ZHAO Peirong, LIU Hongjin, ZHANG Lei, GUO Xiaoyu. The Application Effect of Degradable Film in Potato Production [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 37-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||