Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (28): 126-133.doi: 10.11924/j.issn.1000-6850.casb2023-0793
Previous Articles Next Articles
Received:
2023-11-08
Revised:
2024-07-23
Online:
2024-10-05
Published:
2024-09-29
ZHU Chunxia, QIN Anzhen. Forecasting of Reference Crop Evapotranspiration in Huang-Huai-Hai Plain Based on XGBoost Machine Learning Model and Numerical Weather Prediction Data[J]. Chinese Agricultural Science Bulletin, 2024, 40(28): 126-133.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2023-0793
Tmax | Tmin | Tmean | Ra | S | RH | U2 | |
---|---|---|---|---|---|---|---|
Tmin | 0.912** | 1.000 | |||||
Tmean | 0.943** | 0.867** | 1.000 | ||||
Ra | 0.865** | 0.835** | 0.876** | 1.000 | |||
S | 0.635* | 0.685* | 0.638* | 0.785* | 1.000 | ||
RH | 0.762* | 0.635* | 0.586 | 0.672* | 0.324 | 1.000 | |
U2 | 0.124 | 0.213 | 0.215 | 0.314 | 0.121 | 0.168 | 1.000 |
ET0 | 0.884** | 0.715* | 0.735* | 0.727* | 0.477 | 0.458 | 0.125 |
Tmax | Tmin | Tmean | Ra | S | RH | U2 | |
---|---|---|---|---|---|---|---|
Tmin | 0.912** | 1.000 | |||||
Tmean | 0.943** | 0.867** | 1.000 | ||||
Ra | 0.865** | 0.835** | 0.876** | 1.000 | |||
S | 0.635* | 0.685* | 0.638* | 0.785* | 1.000 | ||
RH | 0.762* | 0.635* | 0.586 | 0.672* | 0.324 | 1.000 | |
U2 | 0.124 | 0.213 | 0.215 | 0.314 | 0.121 | 0.168 | 1.000 |
ET0 | 0.884** | 0.715* | 0.735* | 0.727* | 0.477 | 0.458 | 0.125 |
模型 | 训练阶段 | 验证阶段 | |||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE/(mm/d) | MAE/(mm/d) | MAPE/% | R | RMSE/(mm/d) | MAE/(mm/d) | MAPE/% | ||
BP | 0.817b | 0.496a | 0.864a | 23.5a | 0.757b | 0.485a | 0.452a | 33.6a | |
CatBoost | 0.857b | 0.335b | 0.268b | 15.2b | 0.831a | 0.281b | 0.226b | 11.4b | |
XGBoost | 0.923a | 0.183c | 0.122c | 7.32c | 0.875a | 0.230b | 0.181c | 8.45b |
模型 | 训练阶段 | 验证阶段 | |||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE/(mm/d) | MAE/(mm/d) | MAPE/% | R | RMSE/(mm/d) | MAE/(mm/d) | MAPE/% | ||
BP | 0.817b | 0.496a | 0.864a | 23.5a | 0.757b | 0.485a | 0.452a | 33.6a | |
CatBoost | 0.857b | 0.335b | 0.268b | 15.2b | 0.831a | 0.281b | 0.226b | 11.4b | |
XGBoost | 0.923a | 0.183c | 0.122c | 7.32c | 0.875a | 0.230b | 0.181c | 8.45b |
模型 | 预报天数/d | R | RMSE/(mm/d) | MAE/(mm/d) | MAPE/% |
---|---|---|---|---|---|
BP | 1~8 | 0.65b | 0.185c | 0.240b | 21.6b |
1~16 | 0.54c | 0.230b | 0.281b | 27.6ab | |
1~32 | 0.33e | 0.315a | 0.311a | 30.7a | |
1~56 | 0.31e | 0.326a | 0.325a | 32.6a | |
CatBoost | 1~8 | 0.62b | 0.190c | 0.183c | 9.63c |
1~16 | 0.55c | 0.176c | 0.153cd | 12.6c | |
1~32 | 0.30e | 0.275b | 0.221b | 22.6b | |
1~56 | 0.28e | 0.281b | 0.226b | 24.8b | |
XGBoost | 1~8 | 0.72a | 0.118c | 0.114d | 4.65d |
1~16 | 0.74a | 0.126c | 0.113d | 10.7c | |
1~32 | 0.48d | 0.226b | 0.193c | 16.7b | |
1~56 | 0.43d | 0.230b | 0.181c | 15.6b |
模型 | 预报天数/d | R | RMSE/(mm/d) | MAE/(mm/d) | MAPE/% |
---|---|---|---|---|---|
BP | 1~8 | 0.65b | 0.185c | 0.240b | 21.6b |
1~16 | 0.54c | 0.230b | 0.281b | 27.6ab | |
1~32 | 0.33e | 0.315a | 0.311a | 30.7a | |
1~56 | 0.31e | 0.326a | 0.325a | 32.6a | |
CatBoost | 1~8 | 0.62b | 0.190c | 0.183c | 9.63c |
1~16 | 0.55c | 0.176c | 0.153cd | 12.6c | |
1~32 | 0.30e | 0.275b | 0.221b | 22.6b | |
1~56 | 0.28e | 0.281b | 0.226b | 24.8b | |
XGBoost | 1~8 | 0.72a | 0.118c | 0.114d | 4.65d |
1~16 | 0.74a | 0.126c | 0.113d | 10.7c | |
1~32 | 0.48d | 0.226b | 0.193c | 16.7b | |
1~56 | 0.43d | 0.230b | 0.181c | 15.6b |
日期(年-月-日) | ET0真实值 | ET0预测值 | ||
---|---|---|---|---|
BP模型 | CatBoost模型 | XGBoost模型 | ||
2022-3-1 | 1.88 | 1.75 | 1.81 | 1.76 |
2022-3-2 | 1.85 | 1.72 | 1.65 | 1.77 |
2022-3-3 | 1.89 | 1.62 | 1.69 | 1.77 |
2022-3-4 | 1.86 | 1.64 | 1.61 | 1.78 |
2022-3-5 | 1.94 | 2.01 | 1.76 | 1.76 |
2022-3-6 | 1.79 | 1.85 | 1.78 | 1.77 |
2022-3-7 | 1.87 | 1.96 | 1.75 | 1.74 |
2022-3-8 | 1.82 | 2.01 | 1.81 | 1.78 |
2022-3-9 | 1.96 | 2.16 | 1.70 | 1.75 |
2022-3-10 | 1.74 | 1.68 | 1.95 | 1.90 |
2022-3-11 | 1.98 | 1.63 | 2.01 | 1.95 |
2022-3-12 | 2.01 | 1.62 | 2.15 | 1.98 |
2022-3-13 | 2.14 | 1.68 | 2.23 | 2.03 |
2022-3-14 | 1.86 | 1.98 | 2.10 | 2.16 |
2022-3-15 | 2.16 | 1.85 | 2.32 | 2.14 |
2022-3-16 | 2.23 | 1.69 | 2.14 | 2.19 |
日期(年-月-日) | ET0真实值 | ET0预测值 | ||
---|---|---|---|---|
BP模型 | CatBoost模型 | XGBoost模型 | ||
2022-3-1 | 1.88 | 1.75 | 1.81 | 1.76 |
2022-3-2 | 1.85 | 1.72 | 1.65 | 1.77 |
2022-3-3 | 1.89 | 1.62 | 1.69 | 1.77 |
2022-3-4 | 1.86 | 1.64 | 1.61 | 1.78 |
2022-3-5 | 1.94 | 2.01 | 1.76 | 1.76 |
2022-3-6 | 1.79 | 1.85 | 1.78 | 1.77 |
2022-3-7 | 1.87 | 1.96 | 1.75 | 1.74 |
2022-3-8 | 1.82 | 2.01 | 1.81 | 1.78 |
2022-3-9 | 1.96 | 2.16 | 1.70 | 1.75 |
2022-3-10 | 1.74 | 1.68 | 1.95 | 1.90 |
2022-3-11 | 1.98 | 1.63 | 2.01 | 1.95 |
2022-3-12 | 2.01 | 1.62 | 2.15 | 1.98 |
2022-3-13 | 2.14 | 1.68 | 2.23 | 2.03 |
2022-3-14 | 1.86 | 1.98 | 2.10 | 2.16 |
2022-3-15 | 2.16 | 1.85 | 2.32 | 2.14 |
2022-3-16 | 2.23 | 1.69 | 2.14 | 2.19 |
[1] |
强小嫚, 张凯, 米兆荣, 等. 黄淮海平原地区深松和灌水次数对冬小麦-夏玉米节水增产的影响[J]. 中国农业科学, 2019, 52(3):491-502.
doi: 10.3864/j.issn.0578-1752.2019.03.009 |
[2] |
张东霞, 秦安振. 冬小麦―夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022(6):145-151.
|
[3] |
李金琴, 王宇飞, 侯旭光, 等. 不同节水种植模式对玉米产量的影响[J]. 北方农业学报, 2017, 45(4):30-34.
|
[4] |
|
[5] |
|
[6] |
付浩龙, 罗玉峰, 李亚龙. 基于气温预报的HS公式短期逐日参考作物腾发量预报评价与分析[J]. 长江科学院院报, 2018, 35(2):51-56.
doi: 10.11988/ckyyb.20160868 |
[7] |
刘梦, 罗玉峰, 汪文超, 等. 基于天气预报的漳河灌区参考作物腾发量预报方法比较[J]. 农业工程学报, 2017, 33(19):156-162.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
杨会娟, 粟晓玲, 郭静. 基于支持向量机的干旱区月潜在蒸散发的模拟[J]. 中国农村水利水电, 2016(7):6-10.
|
[18] |
张乐坚, 程明虎, 田付友. 人工神经网络及支持向量机在降雨量预报中的应用[J]. 高原气象, 2010, 29(4):982-991.
|
[19] |
冯丽丽, 张琨, 韩拓, 等. 基于人工神经网络的不同植被类型蒸散量时空尺度扩展[J]. 兰州大学学报(自然科学版), 2017, 53(2):186-193.
|
[20] |
谭君位, 崔远来, 张培青. 实时灌溉预报与灌溉用水决策支持系统研究与应用[J]. 中国农村水利水电, 2015(7):1-4,9.
|
[21] |
任传栋, 王志真, 马钊, 等. 基于深度学习及传统机器学习模型估算山东省参考作物蒸散量[J]. 节水灌溉, 2022(3):67-74.
|
[22] |
|
[23] |
|
[24] |
李俊. 基于改进的BP神经网络的水面蒸发预测[J]. 节水灌溉, 2017(11):42-45.
|
[25] |
杜云皓, 仇锦先, 冯绍元. 改进GA-BP模型在地下水位埋深预测中的应用[J]. 节水灌溉, 2017(9):81-84.
|
[26] |
|
[27] |
|
[28] |
张薇, 霍树义, 贾悦. 机器学习模型在河北省参考作物蒸散量计算中的比较[J]. 节水灌溉, 2018(4):50-53.
|
[29] |
郝林如, 郭向红, 雷涛, 等. 气象要素缺失条件下不同机器学习模型计算参考作物蒸散量比较[J]. 节水灌溉, 2022(7):102-108.
|
[30] |
牛曼丽, 李红岺, 李新旭. 基于CatBoost的温室日参考作物蒸发蒸腾量估算模型研究[J]. 节水灌溉, 2022(1):14-19.
|
[31] |
|
[32] |
刘战东, 肖俊夫, 牛豪震, 等. 地下水埋深对冬小麦和春玉米产量及水分生产效率的影响[J]. 干旱地区农业研究, 2011, 29(1):29-33.
|
[33] |
陈志月, 吴立峰, 刘小强, 等. 基于GPR、CatBoost、XGBoost三种模型预测江西地区水面蒸发量[J]. 水资源与水工程学报, 2020, 31(6):116-125,131.
|
[34] |
李可利, 张鑫. 基于ANFIS的陕西省参考作物蒸散量计算[J]. 自然资源学报, 2020, 35(6):1472-1483.
doi: 10.31497/zrzyxb.20200618 |
[35] |
黄滟淳, 崔宁博, 陈宣全, 等. 基于不同机器学习模型的川中丘陵区参考作物蒸散量模拟[J]. 中国农村水利水电, 2020(5):13-20,27.
|
[36] |
冯培存, 魏正英, 张育斌, 等. 基于思维进化算法优化BP神经网络的温室甜瓜ET0预测研究[J]. 节水灌溉, 2019(9):36-39.
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
谭鑫, 罗童元, 谢亨旺, 等. 基于气温预报的江西省参考作物腾发量预报方法比较与分析[J]. 中国农村水利水电, 2022(4):150-155.
|
[44] |
白依文, 鲁梦格, 程浩楠, 等. 基于天气预报信息的参考作物需水量预报研究[J]. 中国农村水利水电, 2021(10):175-179.
|
[45] |
|
[46] |
|
[47] |
|
[1] | WANG Pengxiang, CHEN Xiangyu, WEI Chunyue, MA Yiru, QIN Shizhe, ZHOU Zexuan, ZHANG Ze. Research on Estimation Model of Aboveground Nitrogen Concentration in Drip Irrigation Cotton Based on Machine Learning Algorithm [J]. Chinese Agricultural Science Bulletin, 2024, 40(4): 148-157. |
[2] | HOU Bingqing, WANG Shuoli, ZHANG Youjie, CAO Yang, SHI Xiangdong, DING Songshuang, LIU Bingyang, WANG Yihui. Prediction Model of Sensory Quality of Cigar Raw Materials Based on BP Neural Network [J]. Chinese Agricultural Science Bulletin, 2024, 40(27): 126-133. |
[3] | LI Ying, E Shengzhe, ZHAO Tianxin, YUAN Jinhua, LIU Yana, LU Gangbin, ZHANG Peng. Research Progress on Digital Soil Mapping Methods [J]. Chinese Agricultural Science Bulletin, 2024, 40(20): 146-153. |
[4] | LIU Xiaofei, XIE Zhaohui. Estimation of Reference Crop Evapotranspiration in Wheat Season Based on Forecast Temperature and HS Formula [J]. Chinese Agricultural Science Bulletin, 2024, 40(2): 107-113. |
[5] | SUN Bo, LI Jing, WANG Jing. Machine Learning in Plant Factory: Current Status and Challenges [J]. Chinese Agricultural Science Bulletin, 2023, 39(18): 142-150. |
[6] | WEN Jianchuan, LIANG Ping, LIAO Yuling, WU Hui, Dong Wentao. Variation Characteristics and Causes Analysis of Reference Crop Evapotranspiration in Congjiang County of Guizhou Province from 1971 to 2020 [J]. Chinese Agricultural Science Bulletin, 2023, 39(17): 72-78. |
[7] | Yang Lingyan, Zhang Hongyan, Chen Yufeng, Liu Yawen. The Application of Machine Learning in Crop Variety Recognition: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 158-164. |
[8] | Yang Hongyun, Luo Jianjun, Wan Ying, Sun Aizhen. Application of Computer Vision Technology in Nitrogen Nutrition Diagnosis of Rice: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 149-155. |
[9] | . Drought Monitoring in the Huang-Huai-Hai Plain: Based on Meteorology and Remote Sensing [J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 127-136. |
[10] | Zhang Weiwei,Wang Yun and Zhang Guobin. Temporal and Spatial Change of Reference Crop Evapotranspiration and Its Cause Analysis in Southwest China During 1960-2013 [J]. Chinese Agricultural Science Bulletin, 2016, 32(2): 135-141. |
[11] |
Wu Yunlong,Li Shan,Fan Fengcui,Wang Shubing,Zhang Li,Jia Jianming and Liu Shengyao.
Analysis of Spatial and Temporal Variation Characteristics of Reference Crop Evapotranspiration in Shijiangzhuang in Recent 49 Years [J]. Chinese Agricultural Science Bulletin, 2015, 31(28): 190-194. |
[12] | 樊哿,, and . Discriminant method of toxicity of mushroom based on support vector machine [J]. Chinese Agricultural Science Bulletin, 2015, 31(19): 232-236. |
[13] | . Calculation Methods Comparison of Reference Crop Evapotranspiration in Aletai Region of Xinjiang [J]. Chinese Agricultural Science Bulletin, 2014, 30(11): 127-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||