Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (31): 152-158.doi: 10.11924/j.issn.1000-6850.casb2024-0019
Previous Articles Next Articles
LI Bianhao(), ZHANG Guoliang(
), LI Pengcheng, ZHAO Hongliang, YAN Feiyu, HUANG Zhiwei, NIU Yuan, QI Bo, ZHANG Linqing, FAN Song
Received:
2024-01-11
Revised:
2024-05-18
Online:
2024-11-05
Published:
2024-11-04
LI Bianhao, ZHANG Guoliang, LI Pengcheng, ZHAO Hongliang, YAN Feiyu, HUANG Zhiwei, NIU Yuan, QI Bo, ZHANG Linqing, FAN Song. Progress in Application of Machine Vision in Rice Seeds Recognition and Classification[J]. Chinese Agricultural Science Bulletin, 2024, 40(31): 152-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2024-0019
编号 | 第一作者 | 发表年份 | 数据集/张 | 图片类型 | 网络框架 | 准确率/% |
---|---|---|---|---|---|---|
1 | Temniranrat K | 2020 | 3500 | RGB | InceptionResNetV2 | 95.15 |
2 | Koklu M | 2021 | 75000 | RGB | VGG16 | 100 |
3 | Lin P | 2018 | 5554 | RGB | DCNN | 92.1 |
4 | Gilanie G | 2021 | 1000 | RGB | RiceNet | 99 |
5 | 叶文超 | 2023 | 2500 | 光谱图像 | 2D-CNN | 98 |
6 | 邱振军 | 2018 | 3000 | 光谱图像 | CNN | 90 |
编号 | 第一作者 | 发表年份 | 数据集/张 | 图片类型 | 网络框架 | 准确率/% |
---|---|---|---|---|---|---|
1 | Temniranrat K | 2020 | 3500 | RGB | InceptionResNetV2 | 95.15 |
2 | Koklu M | 2021 | 75000 | RGB | VGG16 | 100 |
3 | Lin P | 2018 | 5554 | RGB | DCNN | 92.1 |
4 | Gilanie G | 2021 | 1000 | RGB | RiceNet | 99 |
5 | 叶文超 | 2023 | 2500 | 光谱图像 | 2D-CNN | 98 |
6 | 邱振军 | 2018 | 3000 | 光谱图像 | CNN | 90 |
[1] |
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社,2022:378.
|
[2] |
田容才, 卢俊玮. 光谱技术在水稻品种鉴别中的应用[J]. 粮食科技与经济, 2019, 44(7):73-76.
|
[3] |
董雁凯, 王玉超, 李博梾, 等. 基于改进YOLO v5的黄瓜霜霉病分级方法[J]. 江苏农业科学, 2023, 51(22):213-220.
|
[4] |
贾诗音. 基于Android的稻米品种的识别系统设计与实现[D]. 武汉: 武汉轻工大学, 2020.
|
[5] |
|
[6] |
|
[7] |
陈孟燕, 王敏娟, 宋青峰, 等. 基于ECA-FV-CNN的水稻单籽粒质量分级方法[J]. 农业机械学报, 2023, 54(S2):235-243.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
史岩. 从统计学习理论到应用领域与模型拓展:KNN综合探究[J]. 企业科技与发展, 2023(10):27-30.
|
[12] |
冯新妍, 贾昕, 黄金泽, 等. ANN-BiLSTM模型在温带荒漠灌丛碳通量数据缺失值插补中的应用[J]. 北京林业大学学报, 2023, 45(9):62-72.
|
[13] |
|
[14] |
doi: 10.1162/neco.2006.18.7.1527 pmid: 16764513 |
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
陈进, 张帅, 李耀明, 等. 联合收获机水稻破碎籽粒及杂质在线识别方法[J]. 中国农机化学报, 2021, 42(6):2095-5553.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
周红标, 朱亚文, 刘晓洋, 等. 基于机器视觉的水稻印刷播种机成种率检测[J]. 中国农机化学报, 2023, 44(7):194-199.
|
[25] |
王敬湧, 张明珍, 凌华荣, 等. 干旱胁迫下玉米叶片叶绿素含量与含水量高光谱成像反演方法[J]. 智慧农业, 2023, 5(3):142-153.
|
[26] |
王小龙, 邓继忠, 黄华盛, 等. 基于高光谱数据的棉田虫害鉴别研究[J]. 华南农业大学学报, 2019, 40(3):97-103.
|
[27] |
张嘉洪, 何林, 胡新军, 等. 基于高光谱成像技术的高粱农药残留种类检测研究[J]. 食品安全质量检测学报, 2023, 14(20):209-217.
|
[28] |
李斌, 苏成涛, 殷海, 等. 高光谱成像技术结合机器学习的稻米霉变检测[J]. 光谱学与光谱分析, 2023, 43(8):2391-2396.
|
[29] |
夏晨真, 姜艳艳, 张星宇, 等. 基于无人机高光谱影像的黑土区玉米农田土壤有机质估算[J]. 光谱学与光谱分析, 2023, 43(8):2617-2626.
|
[30] |
杨欢, 罗斌, 张晗, 等. 基于高光谱成像技术和IRIV算法的玉米种子品种纯度识别[J]. 江苏大学学报, 2023, 44(2):159-165
|
[31] |
|
[32] |
|
[33] |
叶文超, 罗水洋, 李金豪, 等. 近红外光谱与图像融合的杂交水稻种子分类方法研究[J]. 光谱学与光谱分析, 2023, 43(9):2935-2941.
|
[34] |
|
[35] |
|
[36] |
|
[37] |
杨红云, 黄琼, 孙爱珍, 等. 基于卷积神经网络和支持向量机的水稻种子图像分类识别[J]. 中国粮油学报, 2021, 36(12):144-150.
|
[38] |
黄琼, 杨红云, 万颖. 基于特征数据的水稻种子分类识别方法[J]. 江苏农业学报, 2021, 37(1):8-15.
|
[39] |
阮殿旭. 基于机器视觉的粮食稻米检测系统设计[J]. 南方农机, 2021, 52(23):24-26.
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
李秀昊, 马旭, 李泽华, 等. 基于特征融合和SVM的稻谷品种识别[J]. 中国农机化学报, 2019, 40(7):97-102.
doi: 10.13733/j.jcam.issn.2095-5553.2019.07.18 |
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
doi: 10.1021/acsomega.1c04102 pmid: 35187294 |
[53] |
接昭玮, 周世瑞, 王继芬, 等. 基于多特征算法选择的太赫兹时域光谱用于水稻种子掺假研究[J]. 分析测试学报, 2023, 42(2):158-165.
|
[54] |
邱振军, 陈军, 赵玉英, 等. 高光谱成像结合卷积神经网络对单粒水稻种子品种进行鉴定[J]. 应用科学, 2018, 8(2):212-215.
|
[1] | MA Na, REN Yuxiang. Identification of Various Plant Leaf Diseases Based on Multi-feature BP Neural Network [J]. Chinese Agricultural Science Bulletin, 2024, 40(4): 158-164. |
[2] | WANG Pengxiang, CHEN Xiangyu, WEI Chunyue, MA Yiru, QIN Shizhe, ZHOU Zexuan, ZHANG Ze. Research on Estimation Model of Aboveground Nitrogen Concentration in Drip Irrigation Cotton Based on Machine Learning Algorithm [J]. Chinese Agricultural Science Bulletin, 2024, 40(4): 148-157. |
[3] | DI Biao, LIN Juan, LIU Xian. Research on Prediction Model of Soluble Solid Content in Plums Based on Near-Infrared Spectroscopy Data [J]. Chinese Agricultural Science Bulletin, 2024, 40(31): 133-138. |
[4] | ZHU Chunxia, QIN Anzhen. Forecasting of Reference Crop Evapotranspiration in Huang-Huai-Hai Plain Based on XGBoost Machine Learning Model and Numerical Weather Prediction Data [J]. Chinese Agricultural Science Bulletin, 2024, 40(28): 126-133. |
[5] | LI Ying, E Shengzhe, ZHAO Tianxin, YUAN Jinhua, LIU Yana, LU Gangbin, ZHANG Peng. Research Progress on Digital Soil Mapping Methods [J]. Chinese Agricultural Science Bulletin, 2024, 40(20): 146-153. |
[6] | SUN Bo, LI Jing, WANG Jing. Machine Learning in Plant Factory: Current Status and Challenges [J]. Chinese Agricultural Science Bulletin, 2023, 39(18): 142-150. |
[7] | SUN Yu, ZHANG Yongmei, WU Yujun. Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140. |
[8] | CHONG Yang, ZHAO Jiankai, MA Xiucai. Technology Research and System Design of Automatic Forage Observation [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 126-133. |
[9] | HAO Jing, JIA Zongwei. Comparative Study on Apple Leaf Disease Recognition Models Based on Image Recognition [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 153-158. |
[10] | Liu Yongbo, Hu Liang, Cao Yan, Tang Jiangyun, Lei Bo. Image Segmentation for Maize Leaf Disease Based on U-Net [J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 88-95. |
[11] | Yang Lingyan, Zhang Hongyan, Chen Yufeng, Liu Yawen. The Application of Machine Learning in Crop Variety Recognition: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 158-164. |
[12] | Yang Hongyun, Luo Jianjun, Wan Ying, Sun Aizhen. Application of Computer Vision Technology in Nitrogen Nutrition Diagnosis of Rice: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 149-155. |
[13] | . Designing a Grading Device for Fresh Tobacco Leaves Based on Machine Vision Detection [J]. Chinese Agricultural Science Bulletin, 2019, 35(16): 133-140. |
[14] | . Maize Diseases Identification Based on Deep Convolutional Neural Network [J]. Chinese Agricultural Science Bulletin, 2018, 34(36): 159-164. |
[15] | . Soybean Grain Detection Method Based on MATLAB Image Processing [J]. Chinese Agricultural Science Bulletin, 2018, 34(30): 20-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||