Chinese Agricultural Science Bulletin ›› 2018, Vol. 34 ›› Issue (35): 36-43.doi: 10.11924/j.issn.1000-6850.casb17120040
Special Issue: 生物技术
Previous Articles Next Articles
Received:
2017-12-07
Revised:
2018-11-21
Accepted:
2018-02-24
Online:
2018-12-16
Published:
2018-12-16
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb17120040
[1] Lipiec J, Doussan C, Nosalewicz A, et al. Effect of drought and heat stresses on plant growth and yield[J].International Agrophysics, 2013, 27(4):463-477. [2] Wahid A, Close T J. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves[J]. Biologia Plantarum, 2007, 51(1):104-109. [3] Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants[J]. Environmental Experimental Botany, 2007, 61(3):199-223. [4] Kumar T A, Charan T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiology, 1998,117(3):851-858. [5] 张哲,闵红梅,夏关均,等.高温胁迫对植物生理影响研究进展[J].安徽农业科学,2010,38(16):8338-8339. [6] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science, 2004, 9(5):244-52. [7] Ahuja, Ishita, Vos D, et al. Plant molecular stress responses face climate change[J].Trends in Plant Science, 2010, 15(12):664-74. [8] Zinn K E, Tunc-Ozdemir M, Harper J F. Temperature stress and plant sexual reproduction: uncovering the weakest links[J]. Journal of Experimental Botany, 2010, 61(7):1959-1968. [9] Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance[J]. Plant Biotechnology Journal, 2017,15(4):405-415. [10] Swindell W R, Huebner M, Weber A P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways[J]. BMC Genomics, 2007, 8(1):125-139. [11] Ogawa D,Yamaguchi K, Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth[M]. Third International Conference of Economic History, Mouton, 2007,58(12):3373-3383. [12] Li H,Zhang H,Li G, et al. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis[J]. Functional Plant Biology, 2015,42: 1080-1091. [13] Liu H, Charng Y. Common and distinct functions of Arabidopsis Class A1 and A2 heat shock factors in diverse abiotic stress responses and development[J]. Plant Physiology, 2013,163(1):276-90. [14] Bj?rk J K, Sistonen L. Regulation of the members of the mammalian heat shock factor family[J]. Febs Journal, 2010, 277(20):4126-4139 [15] Fujimoto M, Nakai A. The heat shock factor family and adaptation to proteotoxic stress[J]. Febs Journal, 2010,277(20):4112-4125. [16] Damberger F F, Pelton J G, Harrison C J, et al. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy[J]. Protein Science, 1994,3(10):1806-1821. [17] Harrison C J, Bohm A A, Nelson H C. Crystal structure of the DNA binding domain of the heat shock transcription factor[J]. Science, 1994,263(5144):224-7. [18] Nover N, Bharti K, D?ring P, et al. Arabidopsis and the Heat Stress Transcription Factor World: How Many Heat Stress Transcription Factors Do We Need?[J]. Cell Stress Chaperones, 2001,6(3):177-89. [19] Littlefield O, Nelson H C. A new use for the ''wing'' of the ''winged'' helix-turn-helix motif in the HSF-DNA cocrystal[J]. Nature Structural Biology, 1999,6(5):464-670. [20] Guo L, Chen S, Liu K, et al. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana[J]. Plant Cell Physiology, 2008,49(9):1306-15. [21] Wu C. NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors[J]. Biochemistry, 1994, 33(1):10. [22] Schultheiss J, Kunert O, Gase U, et al. Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24[J]. European Journal of Biochemistry, 1996, 236(3):911-21. [23] Xiao H, Perisic O, Lis J T. Cooperative binding of drosophila heat shock factor to arrays of a conserved 5 bp unit[J]. Cell, 1991, 64(3):585-593. [24] Kotak S, Port M, Ganguli A, et al. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization[J]. Plant Journal, 2004, 39(1):98-112. [25] Peteranderl R, Rabenstein M, Shin Y K, et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor[J]. Biochemistry, 1999,38(12):3559-69. [26] Heerklotz D, D?ring P, Bonzelius F, et al. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2[J]. Molecular Cellular Biology, 2001, 21(5):1759-17. [27] D?ring P, Treuter E, Kistner C, et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2[J]. Plant Cell, 2000,12(2):265-278. [28] Scharf K D, Berberich T, Ebersberger I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution [J]. Biochemical and Biophysical Acta, 2012,1819(2):104-119. [29] Nakai A. New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4[J]. Cell Stress Chaperones, 1999,4(2):86-93. [30] Guo J, Wu J, Qian J, et al. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis[J]. Journal of Genetics and Genomics, 2008,35(2):105-118. [31] Lin Y X, Jiang H Y, Chu Z X, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011,12(1):76-89. [32] 陈勇兵,王燕,张海利.番茄热激转录因子(Hsf)基因家族鉴定及表达分析[J].农业生物技术学报, 2015, 23(4):492-501. [33] Xue G P, Sadat S, Drenth J, et al. The heat shock factor family from triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes[J]. Journal of Experimental Botany, 2014, 65(2):539-557. [34] Chen Z J, Ha M, Soltis D. Polyploidy: genome obesity and its consequences[J]. New Phytologist,2007, 174(4):717-20. [35] Wendel J F. Genome evolution in polyploids[J]. Plant Molecular Biology, 2000,42(1):225-249. [36] Del Pozo J C, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids[J]. Plant Cell Environment, 2014,37(12):2722-2737. [37] Chao D Y, Dilkes B, Luo H, et al. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis[J]. Science, 2013,341(6146):658-9. [38] Yang C, Zhao L, Zhang H, et al. Evolution of physiological responses to salt stress in hexaploid wheat[J]. PNAS of USA, 2014,111(32):11882-7. [39] Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environment, 2011,34(5):738-751. [40] 李春光,陈其军,高新起,等.拟南芥热激转录因子AtHsfA2调节胁迫反应基因的表达并提高热和氧化胁迫耐性[J]. 中国科学C辑:生命科学, 2005,35(5):398-407. [41] Busch W, Wunderlich M, Sch?ffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana[J]. The Plant Journal, 2005, 41(1): 1-14. [42] Charng Y Y, Liu H C, Liu N Y, et al. A heat-induced transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology, 2007,143(1): 251-262. [43] Nishizawa A, Yabuta Y, Yoshida E, et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. Plant Journal, 2006,48(4): 535-547. [44] Nishizawa-Yokoi A, Nosaka R, Hayashi H, et al. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress[J]. Plant Cell and Physiology, 2011,52(5):933-945. [45] Schramm F, Ganguli A, Kiehlmann E, et al. The heat stress transcription factor HSFA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Molecular Biology, 2006,60(5):759-772. [46] Lyck R, Harmening U, H?hfeld I, et al. Intracellular distribution and identification of the nuclear localization signals of two tomato heat stress transcription factors[J]. Planta, 1997,202(1):117-125. [47] Scharf K D, Heider H, H?hfeld I, et al. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules[J]. Molecular and Cellular Biology, 1998,18(4): 2240-2251. [48] 李慧聪,李国良,郭秀林.玉米热激转录因子基因 (ZmHsf06)的克隆、表达和定位分析[J].农业生物技术学报, 2015, 23(1): 41-51. [49] Chauhan H, Khurana N, Agarwal P, et al. A seed preferential heat shock transcription factor from wheat provides Arabidopsis stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment[J]. Plos One, 2013,8(11):e79577. [50] Lohmann C, Eggers-Schumacher G, Wunderlich M, et al. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis[J]. Molecular Genetics and Genomics, 2004,271(1):11-21. [51] Shim D, Hwang J U, Lee J, et al. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. Plant Cell, 2009,21(12): 4031-4043. [52] Yoshida T, Sakuma Y, Todaka D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2a stress-regulatory system[J]. Biochemical Biophysical Research Communications, 2008,368(3):515-521. [53] Pérezsalamó I, Papdi C, Rigó G, et al. The heat shock factor A4a confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6[J]. Plant Physiology, 2014,165(1):319-34. [54] Li Z, Zhang L, Wang A, et al. Ectopic Overexpression of, SlHsfA3, a Heat Stress Transcription Factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis[J]. Plos One, 2013,8(1):e54880. [55] Peng S, Zhu Z, Zhao K, et al. A novel heat shock transcription factor, VpHsf1, from Chinese wild vitis pseudoreticulata, is involved in biotic and abiotic stresses[J]. Plant Molecular Biology Reporter, 2013,31(1):240-247. [56] Baniwal S K, Chan K Y, Scharf K D, et al. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4[J]. Journal of Biological Chemistry, 2007,282(6):3605-13. [57] Huang Y C, Niu C Y, Yang C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology, 2016,172(2):1182-1199. [58] Tejedorcano J, Prietodapena P, Almoguera C, et al. Loss of function of the HSFA9 seed longevity program[J]. Plant Cell Environment, 2010,33(8):1408-1417. [59] Almoguera C, Rojas A, Díaz-Martín J, et al. A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower[J]. Journal of Biological Chemistry, 2002,277(46):43866-43872. [60] Schramm F, Ganguli A, Kiehlmann E, et al. The heat stress transcription factor HSFA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Molecular Biology, 2006, 60(5): 759-772. [61] Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance[J]. Plant Physiol, 2011,157:1243-1254. [62] Mishra S K, Tripp J, Winkelhaus S, et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato[J]. Genes Develop, 2002,16:1555-1567. [63] Bharti K, Von Koskull D?ring P, et al. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP[J]. Plant Cell, 2004,16:1521-1535. [64] 赵立娜,段硕楠,张华宁,等.玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(7):1021-1029. [65] Ma H, Wang C T, Yang B, et al. CarHSFB2, a Class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.) [J]. Plant Molecular Biological Report, 2016,34:1-14. [66] Kolmos E, Chowa B Y, Pruneda-Pazb J L, et al. Kolmos HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock[J]. PNAS of USA, 2014,111:16173-16177. [67] Begum T, Reuter R, Sch?ff F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis[J]. Mechanism of Development, 2012,130:54-60 [68] Mittal D, Chakrabarti S, Sarkar A, et al. Heat shock factor gene family in rice: genomic organization and transcript expression profiing in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiology and Biochemistry, 2009,47:785-795. [69] Zhu J K. Abiotic stress signaling and responses in plants[J]. China Rice, 2016,167(2):313-324. [70] Sangwan V, Orvar B L, Beyerly J, et al. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways[J]. Plant Journal for Cell Molecular Biology, 2002,31(5):629-638. [71] 周人纲,李冰,刘宏涛,等.钙-钙调素热激信号转导途径研究进展[J].自然科学进展,2009,19(5):482-490. [72] Liu H T, Zhou R G. Calmodulin is involved in heat shock signal transduction in wheat[J]. Plant Physiology, 2003, 132(3):1186-1195. [73] Wang Y, Liang S, Xie Q G, et al. Characterization of a calmodulin-regulated Ca2+-dependent-protein-kinase-related protein kinase, AtCRK1, from Arabidopsis[J]. Biochemical Journal, 2004,383( 1):73-81. [74] Liu H T, Gao F, Li G L, et al. The calmodulin-binding protein kinase3 is part of heat-shock signal transduction in Arabidopsis thaliana[J]. Plant Journal for Cell Molecular Biology, 2008,55(5):760-773. [75] Lohmann C, Eggersschumacher G, Wunderlich M, et al. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis[J]. Molecular Genetics Genomics, 2004,271(1):11-21. [76] Busch W, Wunderlich M, Sch?ffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana[J]. Plant Journal, 2005,41(1):1-14. [77] Yoshida T, Ohama N, Nakajima J, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J]. Molecular Genetics Genomics, 2011,286(5-6):321-332. [78] Yoshida T, Sakuma Y, Todaka D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2a stress-regulatory system[J]. Biochemical Biophysical Research Communications, 2008,368(3):515-521. [79] Hwang S M, Kim D W, Woo M S, et al. Functional characterization of Arabidopsis?HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions[J]. Plant Cell Environment, 2014, 37(5):1202-1222. [80] Sugio A, Dreos R, Aparicio F, et al. The Cytosolic Protein response as a subcomponent of the wider heat shock response in Arabidopsis[J]. Plant Cell, 2009,21(2):642-654. [81] Liu J, Qi X. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing[J]. Plant Physiology, 2013,162(1):512-521. [82] Cheng Q, Zhou Y, Liu Z, et al. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology, 2015, 17(2):419. [83] He Z S, Xie R, Zou H S, et al. Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, in Medicago sativa[J]. Biochemical Biophysical Research Communications, 2007,364(4):1056-1061. [84] Song L, Jiang Y, Zhao H, et al. Acquired thermotolerance in plants[J]. Plant Cell Tissue Organ Culture, 2012, 111(3):265-276. [85] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants[J]. Journal of Experimental Botany, 2011,62(14):4731-4748. [86] Ulrike B, Albihlal W S, Tracy L, et al. Arabidopsis heat shock transcription factorA1b overexpression enhances water productivity, resistance to drought, and infection[J]. Journal of Experimental Botany, 2013,64(11):3467-3481. [87] Cabello J V, Lodeyro A F, Zurbriggen M D. Novel perspectives for the engineering of abiotic stress tolerance in plants[J]. Current Opinion in Biotechnology, 2014,26(26C):62-70. [88] Fragkostefanakis S, R?th S, Schleiff E, et al. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks[J]. Plant Cell Environment, 2015,38(9):1881-1895. [89] Kotak S, Vierling E, B?umlein H, et al. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis[J]. Plant Cell, 2007,19(1):182-195. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||