Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (12): 1-9.doi: 10.11924/j.issn.1000-6850.casb19010031
Jiang Hanbing1,2, Zhang Chuanwei1,2, Zhang Yucui1(), Shen Yanjun1(
)
Received:
2019-01-07
Revised:
2019-02-10
Online:
2020-04-25
Published:
2020-04-21
Contact:
Yucui Zhang,Yanjun Shen
E-mail:yczhang@sjziam.ac.cn;yjshen@sjziam.ac.cn
CLC Number:
Jiang Hanbing, Zhang Chuanwei, Zhang Yucui, Shen Yanjun. Crop Stomatal Conductance Model: Research Progress and Application Status[J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb19010031
环境因子 | 气孔导度对各环境因子的响应 | 变化趋势模拟 | 生理机制 |
---|---|---|---|
光合有效辐射 | 光强较低的条件下,gs随光合有效辐射增强而增大;到达一定阈值后,gs随其增强而减小 | 二次曲线[ | 辐射过强导致温度升高,蒸腾速率加快,水分亏缺诱导气孔关闭,甚至过强的光照会损伤植物组织 |
CO2浓度 | 当CO2浓度较低时,gs随CO2浓度升高而增大;到达一定阈值,gs保持稳定;CO2浓度过高时,气孔倾向关闭,gs减小。 | 二次曲线[ | 植物自身调控气孔运动,维持水分散失与CO2吸收的最优化 |
空气相对湿度 | gs随空气相对湿度增加而增加;空气湿度过高时会出现波动 | 正相关[ | 空气湿度过高多出现在阴雨天气,空气湿度饱和差小,气孔倾向关闭。 |
土壤含水量 | gs随土壤含水量的增大而增大,土壤含水量过高时gs可能降低;作物不同生育期响应关系存在差异 | 二次曲线[ | 土壤含水量可影响保卫细胞及其周围细胞的膨压,进而影响气孔开度 |
空气温度 | 在空气温度较低时,gs随其升高而增大;到达一定阈值后,随其升高而减小 | 二次曲线[ | 高温引起蒸腾加快,保卫细胞失水,气孔关闭 |
环境因子 | 气孔导度对各环境因子的响应 | 变化趋势模拟 | 生理机制 |
---|---|---|---|
光合有效辐射 | 光强较低的条件下,gs随光合有效辐射增强而增大;到达一定阈值后,gs随其增强而减小 | 二次曲线[ | 辐射过强导致温度升高,蒸腾速率加快,水分亏缺诱导气孔关闭,甚至过强的光照会损伤植物组织 |
CO2浓度 | 当CO2浓度较低时,gs随CO2浓度升高而增大;到达一定阈值,gs保持稳定;CO2浓度过高时,气孔倾向关闭,gs减小。 | 二次曲线[ | 植物自身调控气孔运动,维持水分散失与CO2吸收的最优化 |
空气相对湿度 | gs随空气相对湿度增加而增加;空气湿度过高时会出现波动 | 正相关[ | 空气湿度过高多出现在阴雨天气,空气湿度饱和差小,气孔倾向关闭。 |
土壤含水量 | gs随土壤含水量的增大而增大,土壤含水量过高时gs可能降低;作物不同生育期响应关系存在差异 | 二次曲线[ | 土壤含水量可影响保卫细胞及其周围细胞的膨压,进而影响气孔开度 |
空气温度 | 在空气温度较低时,gs随其升高而增大;到达一定阈值后,随其升高而减小 | 二次曲线[ | 高温引起蒸腾加快,保卫细胞失水,气孔关闭 |
年份 | 模型函数式 | 基础假设 | 特征 | 应用 |
---|---|---|---|---|
1997[ | gs-Anet之间线性关系的斜率与植物和土壤水分状况存在函数关系 | 引入干旱系数(gbwb) | 在水分胁迫条件下较为精确的模拟和预测气孔导度 | |
2004[ | 引入参数黎明前的叶片水势(ψpd) | |||
1998[ | 引入土壤含水量(θ) | 利用土壤特性模拟水分胁迫下的gs。 | ||
2005[ | gs-Anet之间线性关系的斜率与与季节和时间存在函数关系 | 引入季节效应(fseason) | 模拟不同季节的gs变化,反应季节效应。 | |
2018[ | 气孔最优化理论 | 将BWB模型中的斜率参数与最优气孔导度理论的λ结合 | 提高了模型的机理性和模拟精度 |
年份 | 模型函数式 | 基础假设 | 特征 | 应用 |
---|---|---|---|---|
1997[ | gs-Anet之间线性关系的斜率与植物和土壤水分状况存在函数关系 | 引入干旱系数(gbwb) | 在水分胁迫条件下较为精确的模拟和预测气孔导度 | |
2004[ | 引入参数黎明前的叶片水势(ψpd) | |||
1998[ | 引入土壤含水量(θ) | 利用土壤特性模拟水分胁迫下的gs。 | ||
2005[ | gs-Anet之间线性关系的斜率与与季节和时间存在函数关系 | 引入季节效应(fseason) | 模拟不同季节的gs变化,反应季节效应。 | |
2018[ | 气孔最优化理论 | 将BWB模型中的斜率参数与最优气孔导度理论的λ结合 | 提高了模型的机理性和模拟精度 |
作者 | 模型函数式 | 参数 个数 | 应用假设 | 优点 | 缺点 | 应用情况 |
---|---|---|---|---|---|---|
Jarvis[ | 6 | 各环境因子 对气孔的调 控相互独立 | 形式简单,可就 多个环境因子 建立多元非线 性函数关系 | 1.忽略了各环境因子间的相互作用关系。2.参数生理意义不明确,调参困难 | 广泛应用于 叶片、冠层, 甚至站点尺 度的模拟 | |
Ball[ | 4 | 气孔导度与 光合速率线性 相关。假设叶 表CO2浓度 和空气湿度 保持恒定 | 参数生理意义明 确;样本需求量 较低 | 1.无法反应气孔导 度对综合环境因 子的响应。2.气孔 导度与光合速率 不成线性关系的 部分仍需耦合其 他模型进行模拟。 | ||
Leuning [ | 7 | 引入CO2饱和点 和饱和水气压差 | ||||
Tardieu & Davies [ | 5 | 土壤水分不足时,植物根系通 过ABA调控气 孔开度 | 模型机理明确;明 确反应气孔导度 水分胁迫的反馈 | 参数获取困难 | 主要应用于 水分亏缺条 件下的气孔 导度估算 | |
Buckley[ | >10 | 气孔开度有保 卫细胞与外界 膨压差调控 | 形式简单,便于 参数化和应用 | 合理性方面 存在争议 | ||
Wang Qiuling[ | 7 | 气孔最优化理论 | 机理性强 | 参数λ确定困难 | 主要应用于自然界植被,在农业作物研究中应用较少 |
作者 | 模型函数式 | 参数 个数 | 应用假设 | 优点 | 缺点 | 应用情况 |
---|---|---|---|---|---|---|
Jarvis[ | 6 | 各环境因子 对气孔的调 控相互独立 | 形式简单,可就 多个环境因子 建立多元非线 性函数关系 | 1.忽略了各环境因子间的相互作用关系。2.参数生理意义不明确,调参困难 | 广泛应用于 叶片、冠层, 甚至站点尺 度的模拟 | |
Ball[ | 4 | 气孔导度与 光合速率线性 相关。假设叶 表CO2浓度 和空气湿度 保持恒定 | 参数生理意义明 确;样本需求量 较低 | 1.无法反应气孔导 度对综合环境因 子的响应。2.气孔 导度与光合速率 不成线性关系的 部分仍需耦合其 他模型进行模拟。 | ||
Leuning [ | 7 | 引入CO2饱和点 和饱和水气压差 | ||||
Tardieu & Davies [ | 5 | 土壤水分不足时,植物根系通 过ABA调控气 孔开度 | 模型机理明确;明 确反应气孔导度 水分胁迫的反馈 | 参数获取困难 | 主要应用于 水分亏缺条 件下的气孔 导度估算 | |
Buckley[ | >10 | 气孔开度有保 卫细胞与外界 膨压差调控 | 形式简单,便于 参数化和应用 | 合理性方面 存在争议 | ||
Wang Qiuling[ | 7 | 气孔最优化理论 | 机理性强 | 参数λ确定困难 | 主要应用于自然界植被,在农业作物研究中应用较少 |
[1] |
Wei Z, Du T, Li X , et al. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified “Ball-Berry” Model[J]. Frontiers in Plant Science, 2018,9(445):1-13.
doi: 10.3389/fpls.2018.00001 URL |
[2] | 范苏鲁, 苑兆和, 冯立娟 , 等. 水分胁迫对大丽花光合作用、蒸腾和气孔导度的影响[J]. 中国农学通报, 2011,27(08):119-122. |
[3] |
王秋玲, 周广胜 . 春玉米持续干旱过程中常用气孔导度模型的比较研究[J]. 生态学报, 2018,38(19):6846-6856.
doi: 10.5846/stxb201711082000 URL |
[4] |
Dewar R C . The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synjournal and extension within a spatially aggregated picture of guard cell function[J]. Plant, Cell & Environment, 2002,25(11):1383-1398.
doi: 10.1105/tpc.112.108993 URL |
[5] | Gao Z, Li Z, Chen J . Stomatal Conductance Model Establishment and Simulation for Potted Apple Trees under Drought Stress; proceedings of the International Conference on Measuring Technology & Mechatronics Automation, F, 2017 [C]. |
[6] | 李永秀, 娄运生, 张富存 . 冬小麦气孔导度模型的比较[J]. 中国农业气象, 2011,32(1):106-110. |
[7] |
Wang Q, He Q, Zhou G . Applicability of common stomatal conductance models in maize under varying soil moisture conditions[J]. Science of the Total Environment, 2018, 628-629.
doi: 10.1016/j.scitotenv.2018.01.291 URL pmid: 29432925 |
[8] |
Purcell C, Batke S P, Yiotis C , et al. Increasing stomatal conductance in response to rising atmospheric CO2[J]. Ann Bot, 2018,121(6):1137-1149.
doi: 10.1093/aob/mcx208 URL pmid: 29394303 |
[9] | 谌晓芳 . 鸡桑叶片光合速率与气孔导度及微气象因子的相关性研究[J]. 中国农学通报, 2008,11:197-201. |
[10] | Hoshika Y, Osada Y, Marco A D , et al. Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops[J]. Global Ecology & Biogeography, 2018,27(2):257-275. |
[11] |
Tobin R L, Kulmatiski A . Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park[J]. Plos One, 2018,13(1):e0191396.
doi: 10.1371/journal.pone.0191396 URL pmid: 29373605 |
[12] | 梁彦涛, 佟伟霜, 常缨 . 香鳞毛蕨净光合速率的环境响应及模拟[J]. 中国农学通报, 2013,29(10):58-64. |
[13] | 彭世彰, 丁加丽, 徐俊增 , 等. 不同灌溉模式下光合有效辐射与水稻叶片水分利用效率关系研究[J]. 灌溉排水学报, 2006,25(5):1-5. |
[14] | 王建林, 于贵瑞, 王伯伦 , 等. 北方粳稻光合速率、气孔导度对光强和CO2浓度的响应[J]. 植物生态学报, 2005,29(1):16-25. |
[15] | 杨泽粟, 张强, 郝小翠 , 等. 半干旱雨养地区春小麦气孔导度和胞间CO2浓度对环境因子的响应[J]. 科学技术与工程, 2014,14(33):20-27. |
[16] | 张永强, 姜杰 . 水分胁迫对冬小麦叶片水分生理生态过程的影响[J]. 干旱区研究, 2001(01):57-61. |
[17] | 张义, 谢永生, 郝明德 , 等. 地表覆盖及生理生态因子对苹果树光合特性的影响[J]. 水土保持通报, 2010,30(1):125-130. |
[18] | Anav A, Proietti C, Menut L , et al. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone[J]. Atmospheric Chemistry & Physics, 2018,18(8):5747-5763. |
[19] | 卢振民, 牛文元, 张翼 . 土壤水分含量对冬小麦气孔开启程度的影响[J]. Journal of Integrative Plant Biology, 1986,28(4):419-426. |
[20] | 左应梅, 陈秋波, 邓权权 , 等. 土壤水分、光照和空气湿度对木薯气孔导度的影响[J]. 生态学杂志, 2011,30(4):689-693. |
[21] | 唐凤德, 武耀祥, 韩士杰 , 等. 长白山阔叶红松林叶片气孔导度与环境因子的关系[J]. 生态学报, 2008,28(11):5649-5655. |
[22] | Urban J, Ingwers M, Mcguire M A , et al. Stomatal Conductance Increases with Rising Temperature[J]. Plant Signaling & Behavior, 2017: 1-11. |
[23] | Cowan I, Farquhar G . Stomatal function in relation to leaf metabolism and environment; proceedings of the Symposia of the Society for Experimental Biology, F, 19997 [C]. |
[24] |
Miner G L, Bauerle W L, Baldocchi D D . Estimating the sensitivity of stomatal conductance to photosynjournal: a review[J]. Plant Cell & Environment, 2017,40(7):1214-1238.
doi: 10.1111/pce.12871 URL pmid: 27925232 |
[25] | Farquhar G D, Buckley T N, Miller J M . Optimal stomatal control in relation to leaf area and nitrogen content[J]. Silva Fennica, 2002,36(3):625-637. |
[26] | Graham, Farquhar, 张玉翠.水分利用效率与用水有效性:基于气孔视角的稳定同位素应用研究[J]. 中国生态农业学报, 2014,22(8):886-889. |
[27] | 姜寒冰, 张玉翠, 沈彦俊 , 等. 作物水分利用效率研究方法及尺度传递研究进展[J]. 中国生态农业学报, 2019,27(01):50-59. |
[28] |
Jarvis P G . The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field[J]. Philosophical Transactions of the Royal Society of London, 1976,273(927):593-610.
doi: 10.1098/rstb.2014.0311 URL pmid: 25750234 |
[29] |
White D A, Beadle C L, Sands P J , et al. Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens: a phenomenological approach[J]. Functional Plant Biology, 1999,26(1):17-27.
doi: 10.1071/PP98023 URL |
[30] |
Damour G, Simonneau T, Cochard H , et al. An overview of models of stomatal conductance at the leaf level[J]. Plant Cell & Environment, 2010,33(9):1419-1438.
doi: 10.1111/j.1365-3040.2010.02181.x URL pmid: 20545879 |
[31] | 郭冰寒, 王若水, 肖辉杰 . 沙棘苗期叶水势与气孔导度对水分胁迫的响应[J]. 核农学报, 2018,32(3):609-616. |
[32] |
Stewart J . Modelling surface conductance of pine forest[J]. Agricultural and Forest meteorology, 1988,43(1):19-35.
doi: 10.1371/journal.pone.0069027 URL pmid: 23894401 |
[33] | 马树庆, 纪瑞鹏, 王琪 , 等. 春玉米苗期光合速率、蒸腾速率及气孔导度对土壤干旱的反应[J]. 中国农学通报, 2016,32(27):58-62. |
[34] | Ball J T, Woodrow I E, Berry J A . A model predicting stomatal conductance and its contribution to the control of photosynbook under different environmental conditions[M]. Progress in photosynbook research. Springer, 1987: 221-234. |
[35] |
Leuning R . Modelling stomatal behaviour and and photosynjournal of Eucalyptus grandis[J]. Functional Plant Biology, 1990,17(2):159-175.
doi: 10.1071/PP9900159 URL |
[36] | Aphalo P J, Jarvis P G . Do stomata respond to relative humidity?[J]. Plant Cell & Environment, 2010,14(1):127-132. |
[37] |
Brooks A, Farquhar G D . Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light[J]. Planta, 1985,165(3):397-406.
doi: 10.1007/BF00392238 URL pmid: 24241146 |
[38] |
Yin X, Struik P . C3 and C4 photosynjournal models: an overview from the perspective of crop modelling[J]. NJAS-Wageningen Journal of Life Sciences, 2009,57(1):27-38.
doi: 10.1016/j.njas.2009.07.001 URL |
[39] | Baldocchi D . Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought[J]. Plant Cell & Environment, 2010,20(9):1108-1122. |
[40] |
Misson L, Panek J A, Goldstein A H . A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests[J]. Tree Physiology, 2004,24(5):529-541.
doi: 10.1093/treephys/24.5.529 URL pmid: 14996657 |
[41] |
Wang Y P, Leuning R . A two-leaf model for canopy conductance, photosynjournal and partitioning of available energy I:: Model description and comparison with a multi-layered model[J]. Agricultural and Forest Meteorology, 1998,91(1-2):89-111.
doi: 10.1016/S0168-1923(98)00061-6 URL |
[42] |
Uddling J, Hall M, Wallin G , et al. Measuring and modelling stomatal conductance and photosynjournal in mature birch in Sweden[J]. Agricultural and Forest Meteorology, 2005,132(1-2):115-131.
doi: 10.1016/j.agrformet.2005.07.004 URL |
[43] |
Flexas J, Ribas-Carbo D E A, Galmes J , et al. Mesophyll conductance to CO2: current knowledge and future prospects[J]. Plant Cell & Environment, 2010,31(5):602-621.
doi: 10.1111/j.1365-3040.2007.01757.x URL pmid: 17996013 |
[44] |
Chen Z C, Feng J X, Wan X C . Stomatal Behaviours of Aspen (Populus tremuloides) Plants in Response to Low Root Temperature in Hydroponics[J]. Russian Journal of Plant Physiology, 2018,65(4):512-517.
doi: 10.1134/S1021443718040106 URL |
[45] |
Salazar-Tortosa D, Castro J, Villar-Salvador P , et al. The "isohydric trap": A proposed feedback between water shortage, stomatal regulation, and nutrient acquisition drives differential growth and survival of European pines under climatic dryness[J]. Glob Chang Biol, 2018,24(9):4069-4083.
doi: 10.1111/gcb.14311 URL pmid: 29768696 |
[46] |
Wang L, Wang S, Wei C , et al. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization[J]. Plos One, 2017,12(6):1-21.
doi: 10.1371/journal.pone.0180205 URL pmid: 28662113 |
[47] | Tardieu F, Davies W . Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants[J]. Plant, Cell & Environment, 1993,16(4):341-349. |
[48] | Tardieu F, Simonneau T . Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours[J]. Journal of experimental botany, 1998: 419-432. |
[49] | Gutschick V, Simonneau T . Modelling stomatal conductanceof field-grown sunflower under varying soil water content and leafenvironment: comparison of three models of stomatal response toleaf environment and coupling with an abscisic acid-based modelof stomatal response to soil drying[J]. Plant, Cell & Environment, 2002,25(11):1423-1434. |
[50] | Dewar R . Interpretation of an empirical model for stomatal conductance in terms of guard cell function[J]. Plant, Cell & Environment, 1995,18(4):365-372. |
[51] | Gao Q, Zhao P, Zeng X , et al. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress[J]. Plant, Cell & Environment, 2002,25(11):1373-1381. |
[52] |
Buckley T N, Mott Kafarquhar G D . A hydromechanical and biochemical model of stomatal conductance[J]. Plant Cell & Environment, 2010,26(10):1767-1785.
doi: 10.1111/j.1365-3040.2010.02182.x URL pmid: 20545878 |
[53] |
Farquhar G, Wong S . An empirical model of stomatal conductance[J]. Functional Plant Biology, 1984,11(3):191-210.
doi: 10.1071/PP9840191 URL |
[54] | Medlyn B E, Duursma R A, Eamus D , et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2012,18(11):2134-2144. |
[55] | 纪莎莎 . 基于作物叶片尺度水分高效利用的气孔最优调控机理研究与应用[D]. 北京:中国农业大学, 2017: 2-9. |
[56] |
Merilo E, Yarmolinsky D, Jalakas P , et al. Stomatal VPD response: there is more to the story than ABA[J]. Plant Physiology, 2018,176(1):851-864.
doi: 10.1104/pp.17.00912 URL pmid: 28986421 |
[57] | 金明现, 王天铎 . 根源ABA参与气孔调节的数学模拟[J]. Acta Botanica Sinica, 1997(4):335-340. |
[58] | 王振昌 . 分根区交替灌溉制种玉米节水机理及其气孔导管模型研究[D]. 杨凌:西北农林科技大学, 2012: 83-90. |
[59] | Ji S, Tong L, Kang S , et al. A modified optimal stomatal conductance model under water-stressed condition[J]. International Journal of Plant Production, 2017,11(2):295-314. |
[60] | Kauwe M G D, Kala J, Lin Y S , et al. A test of an optimal stomatal conductance scheme within the CABLE Land Surface Model[J]. Geoscientific Model Development,8,2(2015-02-24), 2015,8(5):431-452. |
[61] |
Dai Y, Dickinson R E, Wang Y P . A two-big-leaf model for canopy temperature, photosynjournal, and stomatal conductance[J]. Journal of Climate, 2004,17(12):2281-2299.
doi: 10.1359/jbmr.2002.17.12.2281 URL pmid: 12469923 |
[62] |
Bellasio C, Quirk J, Buckley T N , et al. A dynamic hydro-mechanical and biochemical model of stomatal conductance for C4 photosynjournal[J]. Plant Physiology, 2017,175(1):104-119.
doi: 10.1104/pp.17.00666 URL pmid: 28751312 |
[63] | Caemmerer S V . Biochemical models of leaf photosynbook[M]. Australia, CSIRO, 2000: 91-139. |
[1] | WU Zhibin, HUANG Chao, LEI Yuan, JING Feng, LIU Zhandong. Water and Fertilizer Utilization Characteristics of Winter Wheat Under Different Yield Levels [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 64-71. |
[2] | WANG Yan, WANG Liwei, ZHAO Hongyan, ZHAO Min, YANG Hongyan. Characteristics of Nutrients and Microbial Community Composition of Different Panax ginseng Cultivation Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 60-68. |
[3] | WANG Chujue, LI Ang, LI Luji. Evaluation of Agricultural Water Use Efficiency in the Yellow River Basin Based on Undesirable Output of Grey Water Footprint [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 105-112. |
[4] | ZHU Wenjie, ZHENG Mingjie, KANG Yuguo. Effects of Different Light Radiation Intensities on Photosynthesis of Three Vine Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 27-31. |
[5] | SHI Ruilin, ZHANG Qingfen, LI Ming, LI Quanqi, ZHANG Mingming. Application of Plant Carbon Isotope Fractionation in the Study of Water Use Efficiency [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 15-20. |
[6] | LIU Bin, WEI Hui, KOU Yanyan, CHEN Nianlai, XIE Jianming. Effects of Irrigation System on Leaf Water Status and Water Use Efficiency of Melon/Sunflower Intercropping System [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 19-25. |
[7] | WANG Yan, LI Lingzhi, GUO Wenzhong, WEN Jiangli, LI Yinkun, FAN Fengcui, WU Yuesheng, LI Haiping. Effects of Humic Acid on the Growth, Physiology and Water Use Efficiency of Zucchini Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 47-53. |
[8] | Wu Yunfei, Zhang Yong, Wang Leilei, Yu Xurun, Xiong Fei. Starch Quality of Rice Grain: Research Progress on Influencing Factors and Mechanism [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 1-8. |
[9] | Wang Zhijun, Wang Bisheng, Sun Xiaolu, Xu Mengjie, Yang Xiaohui, Hou Jinjin, Fang Quanxiao. Effects of Different Drip Irrigation Schedules on Soil Moisture, Wheat Growth and Water Use at Jiaodong Semi-humid Region [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 6-15. |
[10] | Li Jiancha, Li Kun, Pan Zhixian, Sun Yi, Fang Haidong, Shi Liangtao, Zhang Lei, Yue Xuewen. Effects of Irrigation Amount and Planting Density on Biomass Allocation, Yield and Water Use Efficiency of Purple Cabbage in Arid-hot Valley [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 50-57. |
[11] | Wang Liming, Chen Guangrong, Yang Ruping, Zhang Guohong, Yang Fengke. Effects of Different Film-mulching Planting Modes on Growth, Development, Yield and Water Use Efficiency of Dryland Soybean in the Semiarid Area of Gansu, China [J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 8-14. |
[12] | Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. |
[13] | Zhu Lin, Bai Zhenqing, Wang Yanfeng, Wu Jiawen. The Effect of Abiotic Stresses on Sugar Yield in Energy Crops: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 6-11. |
[14] | Zhou Yu’an, Liu Yuhua, Zhang Lifeng. Covering Methods: Effects on the Growth, Yield and Water Use Efficiency of Rain-fed Forage Maize [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 8-13. |
[15] | Liu Huatao, Huang Xuefang, Huang Mingjing, Zhang Dongmei, Zhang Wei, Zhao Cong. Maize Varieties with Different Genotypes: Study on Yield, Drought Resistance and Water Use Efficiency [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 12-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||