Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (35): 22-27.doi: 10.11924/j.issn.1000-6850.casb20191200953
Previous Articles Next Articles
Liu Ronglin1,2,3(), Cai Baiyan1,2(
), Ge Jingping1,3(
)
Received:
2019-12-16
Revised:
2020-02-10
Online:
2020-12-15
Published:
2020-12-18
Contact:
Cai Baiyan,Ge Jingping
E-mail:1197020387@qq.com;caibaiyan@126.com;gejingping@126.com
CLC Number:
Liu Ronglin, Cai Baiyan, Ge Jingping. The Interaction of Arbuscular Mycorrhizal Fungi, Rhizobia and Phosphate Solubilizing Bacteria: Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 22-27.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191200953
[1] | Fan Q J, Liu J H. Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata[J]. Acta Physiologiae Plantarum, 2011,33(4):1533-1542. |
[2] | Krishnamoorthy R, Kim K, Subramanian P, et al. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil[J]. Agriculture, Ecosystems & Environment, 2016(231):233-239. |
[3] |
Park J H, Bolan N, Megharaj M, et al. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.)[J]. Journal of environmental management, 2011,92(4):1115-1120.
doi: 10.1016/j.jenvman.2010.11.031 URL pmid: 21190789 |
[4] |
Jeong S, Moon H S, Nam K, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil[J]. Chemosphere, 2012,88(2):204-210.
doi: 10.1016/j.chemosphere.2012.03.013 URL pmid: 22472099 |
[5] | Zhang L, Xu M, Liu Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. New Phytologist, 2016,210(3):1022-1032. |
[6] |
Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria[J]. Applied Microbiology and Biotechnology, 2011,89(4):917-930.
doi: 10.1007/s00253-010-3004-6 URL pmid: 21104242 |
[7] |
Schubler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution[J]. Mycological research, 2001,105(12):1413-1421.
doi: 10.1017/S0953756201005196 URL |
[8] | Wu Q S, He J D, Srivastava A, et al. Mycorrhiza enhances drought tolerance of citrus by altering root fatty acid compositions and their saturation levels[J]. Tree physiology, 2019,231:233-239 |
[9] |
李淑敏, 武帆. 大豆/玉米间作体系中接种AM真菌和根瘤菌对氮素吸收的促进作用[J]. 植物营养与肥料学报, 2011,17(1):110-116.
doi: 10.11674/zwyf.2011.0115 URL |
[10] | Ren A T, Zhu Y, Chen Y L, et al. Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings[J]. Environmental and Experimental Botany, 2019,22(16):261-270. |
[11] |
Berreck M, Haselwandter K. Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants[J]. Mycorrhiza, 2001,10(6):275-280.
doi: 10.1007/s005720000089 URL |
[12] |
Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications[J]. Journal of experimental botany, 2016,67(22):6253-6265.
doi: 10.1093/jxb/erw403 URL pmid: 27799283 |
[13] | Augé R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001,11(1):3-42. |
[14] | Zhang Z, Mallik A, Zhang J, et al. Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates[J]. Soil and Tillage Research, 2019,194(1):155-162. |
[15] | Eulenstein F, Tauschke M, Behrendt A, et al. The application of mycorrhizal fungi and organic fertilisers in horticultural potting soils to improve water use efficiency of crops[J]. Horticulturae, 2017,3(1):8-16. |
[16] | Vestberg M, Kukkonen S, Saari K, et al. Microbial inoculation for improving the growth and health of micropropagated strawberry[J]. Applied Soil Ecology, 2004,27(3):243-258. |
[17] | 刘世亮, 骆永明, 丁克强, 等. 菌根真菌对土壤中有机污染物的修复研究[J]. 地球科学进展, 2004,19(2):197-203. |
[18] | 谭何新, 肖玲, 周正, 等. 青蒿素生物合成分子机制及调控研究进展[J]. 中国中药杂志, 2017,42(1):10-19. |
[19] | Chaudhary V, Kapoor R, Bhatnagar A. Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L[J]. Applied Soil Ecology, 2008,40(1):174-181. |
[20] | Anil K, Shukla A, Hashm13 S, et al. Effect of trees on colonization of intercrops by vesicular arbuscular mycorrhizae in agroforestry systems[J]. Annals of Agricultural Research, 2011,16(10):166-173. |
[21] | 李玲, 沈宝宇, 张天静, 等. 根瘤菌对生态农业的重要意义及其影响因素[J]. 园艺与种苗, 2019,39(3):72-75. |
[22] | 韩梅. 蚕豆根瘤菌耐旱耐盐碱性研究[J]. 青海大学学报, 2019,37(4):35-41. |
[23] | Guo Y, Ni Y, Huang J. Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China[J]. Tropical Grasslands, 2010,44:109-114. |
[24] | Broos K, Beyens H, Smolders E. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant[J]. Soil Biology and Biochemistry, 2005,37(3):573-579. |
[25] | Schwember A R, Schulze J, Del Pozo A, et al. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules[J]. Plants, 2019,8(9):333-341. |
[26] | Saliou Sarr P, Fujimoto S, Yamakawa T. Nodulation, Nitrogen Fixation and Growth of Rhizobia-Inoculated Cowpea (Vignaunguiculata L. Walp) In Relation with External Nitrogen and Light Intensity[J]. International Journal of Plant Biology & Research, 2015,12(05):31-39. |
[27] | Remy W, Taylor T N, Hass H, et al. Four hundred-million-year-old vesicular arbuscular mycorrhizae[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(25):1181-1183. |
[28] | Xavier L J, Germida J J. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition[J]. Biology and Fertility of Soils, 2003,37(5):261-267. |
[29] | Haro H, Sanon K B, Le Roux C, et al. Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso[J]. Symbiosis, 2018,74(2):107-120. |
[30] |
Abd-Alla M H, El-Enany A W E, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research, 2014,169(1):49-58.
doi: 10.1016/j.micres.2013.07.007 URL pmid: 23920230 |
[31] |
Valdenegro M, Barea J, AZCóN R. Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid mediterranean area[J]. Plant Growth Regulation, 2001,34(2):233-240.
doi: 10.1023/A:1013323529603 URL |
[32] | Tavasolee A, Aliasgharzad N, Salehijouzani G, et al. Interactive effects of Arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant[J]. African Journal of Biotechnology, 2011,10(39):7585-7591. |
[33] | 王晓瑜, 丁婷婷, 李彦忠, 等. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响[J]. 草业学报, 2019,28(08):139-149. |
[34] |
Da Silva J S, De Carvalho T S, Dos santos J V, et al. Formononetin stimulates mycorrhizal fungi colonization on the surface of active root nodules in soybean[J]. Symbiosis, 2017,71(1):27-34.
doi: 10.1007/s13199-016-0408-9 URL |
[35] |
Xu L, Teng Y, Li Z G, et al. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum[J]. Science of the total environment, 2010,408(5):1007-1013.
doi: 10.1016/j.scitotenv.2009.11.031 URL |
[36] |
Ren C G, Kong C C, Bian B, et al. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium[J]. International journal of phytoremediation, 2017,19(9):789-797.
doi: 10.1080/15226514.2017.1284755 URL pmid: 28165756 |
[37] |
Ren C G, Kong C C, Wang S X, et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium[J]. Chemosphere, 2019,217:773-779.
doi: 10.1016/j.chemosphere.2018.11.085 URL pmid: 30448757 |
[38] |
Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas[J]. Current microbiology, 2008,56(1):73-79.
doi: 10.1007/s00284-007-9042-3 URL |
[39] |
Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource technology, 2006,97(2):204-210.
doi: 10.1016/j.biortech.2005.02.021 URL pmid: 16171676 |
[40] | Fitriatin B N, Haris Z A, Nuraniya N, et al. Effect of Azolla Compost and Biofertiliser on Phosphate Solubilising Bacteria, Available-P and Dry Weight of Rice Cultivated in Saline Soil[J]. Malaysian Journal of Soil Science, 2019,23:167-172. |
[41] |
Do Carmo T S, Moreira F S, Cabral B V, et al. Phosphorus Recovery from Phosphate Rocks Using Phosphate-Solubilizing Bacteria[J]. Geomicrobiology Journal, 2019,36(3):195-203.
doi: 10.1080/01490451.2018.1534901 URL |
[42] | Santana C, Piccirillo C, Pereira S, et al. Employment of phosphate solubilising bacteria on fish scales-Turning food waste into an available phosphorus source[J]. Journal of Environmental Chemical Engineering, 2019,7(5):103-110. |
[43] |
Saxena J, Jha A. Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants[J]. CLEAN-Soil, Air, Water, 2014,42(9):1248-1252.
doi: 10.1002/clen.v42.9 URL |
[44] |
Deveau A, Palin B, Delaruelle C, et al. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N[J]. New Phytologist, 2007,175(4):743-755.
doi: 10.1111/nph.2007.175.issue-4 URL |
[45] |
Visen A, Bohra M, Singh P, et al. Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake[J]. Rhizosphere, 2017,3:196-202.
doi: 10.1016/j.rhisph.2017.04.006 URL |
[46] |
Zhang L, Fan J, Ding X, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014,74:177-183.
doi: 10.1016/j.soilbio.2014.03.004 URL |
[47] |
Toljander J F, Artursson V, Paul L R, et al. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species[J]. FEMS Microbiology Letters, 2006,254(1):34-40.
doi: 10.1111/j.1574-6968.2005.00003.x URL pmid: 16451176 |
[48] |
Toljander J F, Lindahl B D, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS Microbiology Ecology, 2007,61(2):295-304.
doi: 10.1111/j.1574-6941.2007.00337.x URL pmid: 17535297 |
[49] |
Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME journal, 2018,12(10):2339-2351.
doi: 10.1038/s41396-018-0171-4 URL pmid: 29899507 |
[50] | 李腾腾, 傅智峰, 李侠. 低磷土壤接种菌根真菌和解磷细菌对大田玉米生长和磷吸收的影响[J]. 土壤通报, 2017,48(4):922-929. |
[51] |
Kucey R, Paul E. Carbon flow, photosynjournal, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.)[J]. Soil biology and biochemistry, 1982,14(4):407-412.
doi: 10.1016/0038-0717(82)90013-X URL |
[52] |
Yasmeen S, Bano A. Combined effect of phosphate-solubilizing microorganisms, Rhizobium and Enterobacter on root nodulation and physiology of soybean (Glycine max L.)[J]. Communications in soil science and plant analysis, 2014,45(18):2373-2384.
doi: 10.1080/00103624.2014.939192 URL |
[53] |
Matias S R, Pagano M C, Muzzi F C, et al. Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil[J]. European Journal of Soil Biology, 2009,45(3):259-266.
doi: 10.1016/j.ejsobi.2009.02.003 URL |
[1] | ZHANG Bo, SHI Feng, SONG Fuqiang. AMF Complex Fungicides: Effects on Photosynthesis and Growth of Rice in Cold Region [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 15-22. |
[2] | BAI Wei, HU Yang, LI Feng, ZHANG Baoying, CUI Jinli, YANG Sumei. Effects of N, P and K Fertilizers on Yield Related Traits and Economic Benefits of Confectionary Sunflower [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 62-68. |
[3] | LIAO Zhangbo, HE Yuanlan, MO Shendai. The Effect of Meteorological Factors on Sugarcane Yield and Research Progress of Environmental Interaction Genes [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 82-87. |
[4] | CHEN Ying, WU Fanqi, GENG Yeye, BAI Yu, WANG Guirong, YANG Huijie, SUN Zhirong. The Effects of Nodule Nitrogen Fixation on Legumes: Visual Analysis Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 35-43. |
[5] | ZHAO Tianxin, E Shengzhe, YUAN Jinhua, WANG Yuxuan, YAO Jiaxuan. Interaction Between Calcium and Organic Carbon in Soil: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 77-81. |
[6] | CHEN Fangling, FAN Yaping, HE Miaomiao, WANG Changxian. The Application of Arbuscular Mycorrhizal Fungi in Herbs: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 55-60. |
[7] | WU Man, MENG Cuiping, LIANG Haiyan, YANG Liyu, WU Qi, CI Dunwei, ZHENG Yongmei, LI Xinguo. Bibliometric Analysis of Rhizobia Research at Home and Abroad [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 155-164. |
[8] | Zhao Xu, Song Qinghui, Wang Xiaohui, Wang Xuegang, Feng Yuhan, Sun Simiao, Li Hongtao, Chang Wei, Song Fuqiang. Several Organic Fertilizers: Effects on Photosynthetic Characteristics of Maize and Soil Enzyme Activities [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 36-42. |
[9] | Gao Xiaoning, Wu Zilin, Huang Yonghong, Liu Rui, Qi Yongwen. Response of Sugarcane Leaves to the Infection of Puccinia melanocephala: Transcriptomic Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 102-109. |
[10] | Li Shan, Du Chunmei. The Interaction Between Magnaporthe oryzae and Rice: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 125-131. |
[11] | Yuan Renwen, Liu Lin, Zhang Rui, Fan Shuying. The Interaction Mechanism Between Plant Rhizosphere Secretion and Soil Microbe: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 26-35. |
[12] | Xu Fuxian, Zhou Xingbing, Zhang Lin, Jiang Peng, Liu Mao, Guo Xiaoyi, Zhu Yongchuan, Xiong Hong. Interaction Between Fish Culture and Nitrogen Application: Effects on Soil Fertility, Rice Yield and Nutrient Accumulation in Paddy Fields [J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 1-7. |
[13] | Gao Fen, Yan Huan, Wang Mengliang, Qin Xuemei. Soil Microbial Community Changes: Effects on Soil-borne Diseases and Biological Regulation [J]. Chinese Agricultural Science Bulletin, 2020, 36(13): 160-164. |
[14] | Lv Jiabao, Yu Mengdi, Li Haiying. BvM14-STPK Protein Kinase Interaction Protein in Beta vulgaris: Identification and Screening [J]. Chinese Agricultural Science Bulletin, 2020, 36(1): 30-34. |
[15] | . Determination of betaine in red Sugarbeet by hydrophilic interaction liquid chromatography-tandem mass spectrometryZhou Qin<sup>1,2,3,4</sup>, Wu Yumei<sup>1,2,3,4</sup> [J]. Chinese Agricultural Science Bulletin, 2019, 35(7): 134-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||