Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (26): 24-31.doi: 10.11924/j.issn.1000-6850.casb2021-0477
Previous Articles Next Articles
Received:
2021-05-07
Revised:
2021-07-10
Online:
2021-09-15
Published:
2021-09-30
CLC Number:
Yuan Jing, Zhou Bingying. The Regulation of Leaf Margin Serration Development in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 24-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0477
[1] | 柯锦秀, 陈多, 郭延平. 植物叶缘形态的发育调控机理[J]. 生物多样性, 2018, 26(9):74-83. |
[2] |
Wilson T P, Canny M J, Mccully M E. Leaf teeth, transpiration and the retrieval of apoplastic solutes in balsam poplar[J]. Physiologia Plantarum, 2010, 83(2):225-232.
doi: 10.1111/ppl.1991.83.issue-2 URL |
[3] |
Vogel S. Leaves in the lowest and highest winds: temperature, force and shape[J]. The New Phytologist, 2009, 183(1):13-26.
doi: 10.1111/nph.2009.183.issue-1 URL |
[4] |
Peppe D J, Royer D L, Cariglino B, et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications[J]. The New Phytologist, 2011, 190(3):724-739.
doi: 10.1111/nph.2011.190.issue-3 URL |
[5] |
Semchenko M, Zobel K. The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae)[J]. Annals of Botany, 2007, 100(1):83-90.
pmid: 17495981 |
[6] |
Higuchi Y, Kawakita A. Leaf shape deters plant processing by an herbivorous weevil[J]. Nature Plants, 2019, 5(9):959-964.
doi: 10.1038/s41477-019-0505-x pmid: 31477889 |
[7] | 陈玉新. 基于局部特征的植物叶缘分类研究[D]. 杭州:浙江农林大学, 2014. |
[8] |
Tsukaya H. Leaf shape: genetic controls and environmental factors[J]. The International Journal of Developmental Biology, 2005, 49(5-6):547-555.
doi: 10.1387/ijdb.041921ht URL |
[9] |
Hay A, Barkoulas M, Tsiantis M. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis[J]. Development, 2006, 133(20):3955-3961.
doi: 10.1242/dev.02545 URL |
[10] |
Scarpella E, Marcos D, Friml J, et al. Control of leaf vascular patterning by polar auxin transport[J]. Genes and Development, 2006, 20(8):1015-1027.
pmid: 16618807 |
[11] |
Kasprzewska A, Carter R, Swarup R, et al. Auxin influx importers modulate serration along the leaf margin[J]. The Plant Journal, 2015, 83(4):705-718.
doi: 10.1111/tpj.12921 pmid: 26111009 |
[12] |
Zhang J, Chen R, Xiao J, et al. A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant[J]. Journal of Plant Research, 2007, 120(6):671-678.
doi: 10.1007/s10265-007-0109-9 URL |
[13] |
Koenig D, Bayer E, Kang J, et al. Auxin patterns Solanum lycopersicum leaf morphogenesis[J]. Development, 2009, 136(17):2997-3006.
doi: 10.1242/dev.033811 URL |
[14] | Tang Y, Zhao C Y. Arabidopsis type II phosphatidylinositol 4-kinase PI4Kγ5 regulates auxin biosynjournal and leaf margin development through interacting with membrane-bound transcription factor ANAC078[J]. PLoS Genetics, 2016, 12(8):e1006252. |
[15] |
Shani E, Ben-Gera H, Shleizer-Burko S, et al. Cytokinin regulates compound leaf development in tomato[J]. The Plant Cell, 2010, 22(10):3206-3217.
doi: 10.1105/tpc.110.078253 URL |
[16] |
Efroni I, Han S K, Kim H J, et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses[J]. Developmental Cell, 2013, 24(4):438-445.
doi: 10.1016/j.devcel.2013.01.019 pmid: 23449474 |
[17] |
Hedden P. Gibberellin metabolism and its regulation[J]. Journal of Plant Growth Regulation, 2001, 20(4):317-318.
doi: 10.1007/s003440010039 URL |
[18] |
Jasinski S, Tattersall A, Piazza P, et al. PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato[J]. The Plant Journal, 2008, 56(4):603-612.
doi: 10.1111/j.1365-313X.2008.03628.x pmid: 18643984 |
[19] |
Yanai O, Shani E, Russ D, et al. Gibberellin partly mediates LANCEOLATE activity in tomato[J]. The Plant Journal, 2011, 68(4):571-582.
doi: 10.1111/j.1365-313X.2011.04716.x URL |
[20] |
Fleishon S, Shani E, Ori N, et al. Negative reciprocal interactions between gibberellin and cytokinin in tomato[J]. The New Phytologist, 2011, 190(3):609-617.
doi: 10.1111/nph.2011.190.issue-3 URL |
[21] |
Hay A, Kaur H, Phillips A, et al. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans[J]. Current Biology, 2002, 12(18):1557-1565.
doi: 10.1016/S0960-9822(02)01125-9 URL |
[22] |
Vroemen C W, Mordhorst A P, Albrecht C, et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis[J]. The Plant Cell, 2003, 15(7):1563-1577.
doi: 10.1105/tpc.012203 URL |
[23] |
Laufs P, Peaucelle A, Morin H, et al. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems[J]. Development, 2004, 131(17):4311-4322.
doi: 10.1242/dev.01320 URL |
[24] |
Nikovics K, Blein T, Peaucelle A, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis[J]. The Plant Cell, 2006, 18(11):2929-2945.
doi: 10.1105/tpc.106.045617 URL |
[25] |
Hasson A, Plessis A, Blein T, et al. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development[J]. The Plant Cell, 2011, 23(1):54-68.
doi: 10.1105/tpc.110.081448 pmid: 21258003 |
[26] |
Blein T, Pulido A, Vialette-Guiraud A, et al. A conserved molecular framework for compound leaf development[J]. Science, 2008, 322(5909):1835-1839.
doi: 10.1126/science.1166168 URL |
[27] |
Berger Y, Harpaz-Saad S, Brand A, et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves[J]. Development, 2009, 136(5):823-832.
doi: 10.1242/dev.031625 pmid: 19176589 |
[28] |
Busch A, Zachgo S. Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation[J]. Bioessays, 2009, 31(11):1181-1190.
doi: 10.1002/bies.v31:11 URL |
[29] | Wang Z, Cui D, Hu Y. CIN-like TCP transcription factors: the key regulators of plant development and immunity[J]. Progress in Biochemistry and Biophysics, 2017, 44(3):215-223. |
[30] |
Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263.
doi: 10.1038/nature01958 URL |
[31] |
Martin-Trillo M, Cubas P. TCP genes: a family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1):31-39.
doi: 10.1016/j.tplants.2009.11.003 URL |
[32] |
Bresso E G, Chorostecki U, Rodriguez R E, et al. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development[J]. Plant Physiology, 2018, 176(2):1694-1708.
doi: 10.1104/pp.17.00823 URL |
[33] |
Nath U, Crawford B C, Carpenter R, et al. Genetic control of surface curvature[J]. Science, 2003, 299(5611):1404-1407.
doi: 10.1126/science.1079354 URL |
[34] |
Ori N, Cohen A R, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6):787-791.
doi: 10.1038/ng2036 URL |
[35] |
Burko Y, Shleizer-Burko S, Yanai O, et al. A role for APETALA1/FRUITFULL transcription factors in tomato leaf development[J]. The Plant Cell, 2013, 25(6):2070-2083.
doi: 10.1105/tpc.113.113035 URL |
[36] |
Tao Q, Guo D, Wei B, et al. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis[J]. The Plant Cell, 2013, 25(2):421-437.
doi: 10.1105/tpc.113.109223 URL |
[37] |
Zhang J, Wei B, Yuan R, et al. The Arabidopsis RING-type E3 ligase TEAR1 controls leaf development by targeting the TIE1 transcriptional repressor for degradation[J]. The Plant Cell, 2017, 29(2):243-259.
doi: 10.1105/tpc.16.00771 URL |
[38] |
Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. The Plant Cell, 2007, 19(2):473-484.
doi: 10.1105/tpc.106.044792 URL |
[39] |
Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. The Plant Cell, 2010, 22(11):3574-3588.
doi: 10.1105/tpc.110.075598 URL |
[40] |
Rubio-Somoza I, Zhou C M, Confraria A, et al. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes[J]. Current Biology, 2014, 24(22):2714-2719.
doi: 10.1016/j.cub.2014.09.058 pmid: 25448000 |
[41] |
Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[42] |
Hay A, Tsiantis M. KNOX genes: versatile regulators of plant development and diversity[J]. Development, 2010, 137(19):3153-3165.
doi: 10.1242/dev.030049 URL |
[43] |
Hake S, Smith H M, Holtan H, et al. The role of KNOX genes in plant development[J]. Annual review of cell and developmental biology, 2004, 20:125-151.
doi: 10.1146/annurev.cellbio.20.031803.093824 URL |
[44] | 马燕. 水稻OsAS2基因的分离及其在拟南芥和水稻中的功能分析[D]. 泰安:山东农业大学, 2007. |
[45] |
Hay A, Jackson D, Ori N, et al. Analysis of the competence to respond to KNOTTED1 activity in Arabidopsis leaves using a steroid induction system[J]. Plant Physiology, 2003, 131(4):1671-1680.
doi: 10.1104/pp.102.017434 URL |
[46] |
Piazza P, Bailey C D, Cartolano M, et al. Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep[J]. Current Biology, 2010, 20(24):2223-2228.
doi: 10.1016/j.cub.2010.11.037 pmid: 21129970 |
[47] |
Byrne M E, Barley R, Curtis M, et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J]. Nature, 2000, 408(6815):967-971.
doi: 10.1038/35050091 URL |
[48] |
Spinelli S V, Martin A P, Viola I L, et al. A mechanistic link between STM and CUC1 during Arabidopsis development[J]. Plant Physiology, 2011, 156(4):1894-1904.
doi: 10.1104/pp.111.177709 pmid: 21685178 |
[49] |
Hay A, Tsiantis M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsute[J]. Nature Genetics, 2006, 38(8):942-947.
doi: 10.1038/ng1835 URL |
[50] |
Shani E, Burko Y, Ben-Yaakov L, et al. Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins[J]. The Plant Cell, 2009, 21(10):3078-3092.
doi: 10.1105/tpc.109.068148 URL |
[51] | 袁亚钦. SlAS2和SlTKN3调控番茄果实发育的功能研究[D]. 北京:中国农业科学院, 2019. |
[52] |
Kumar R, Kushalappa K, Godt D, et al. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins[J]. The Plant Cell, 2007, 19(9):2719-2735.
doi: 10.1105/tpc.106.048769 URL |
[53] |
Bar M, Ori N. Compound leaf development in model plant species[J]. Current Opinion in Plant Biology, 2015, 23:61-69.
doi: 10.1016/j.pbi.2014.10.007 URL |
[54] |
Kimura S, Koenig D, Kang J, et al. Natural variation in leaf morphology results from mutation of a novel KNOX gene[J]. Current Biology, 2008, 18(9):672-677.
doi: 10.1016/j.cub.2008.04.008 URL |
[55] |
Borghi L, Bureau M, Simon R. Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity[J]. The Plant Cell, 2007, 19(6):1795-1808.
doi: 10.1105/tpc.106.047159 URL |
[56] |
Bar M, Ori N. Leaf development and morphogenesis[J]. Development, 2014, 141(22):4219-4230.
doi: 10.1242/dev.106195 URL |
[57] |
Champagne C E, Goliber T E, Wojciechowski M F, et al. Compound leaf development and evolution in the legumes[J]. The Plant Cell, 2007, 19(11):3369-3378.
doi: 10.1105/tpc.107.052886 URL |
[58] |
Ge L, Peng J, Berbel A, et al. Regulation of compound leaf development by PHANTASTICA in Medicago truncatula[J]. Plant Physiology, 2014, 164(1):216-228.
doi: 10.1104/pp.113.229914 URL |
[59] |
Dong Z C, Zhao Z, Liu C W, et al. Floral patterning in Lotus japonicas[J]. Plant Physiology, 2005, 137(4):1272-1282.
doi: 10.1104/pp.104.054288 URL |
[60] |
Lee I, Wolfe D S, Nilsson O, et al. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS[J]. Current Biology, 1997, 7(2):95-104.
pmid: 9016705 |
[61] |
Taylor S, Hofer J, Murfet I. Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves[J]. The Plant Cell, 2001, 13(1):31-46.
doi: 10.1105/tpc.13.1.31 URL |
[62] |
Shpak E D. Diverse roles of ERECTA family genes in plant development[J]. Journal of Integrative Plant Biology, 2013, 55(12):1238-1250.
doi: 10.1111/jipb.12108 URL |
[63] |
Tameshige T, Okamoto S, Tasaka M, et al. Impact of erecta mutation on leaf serration differs between Arabidopsis accessions[J]. Plant Signaling and Behavior, 2016, 11(12):e1261231.
doi: 10.1080/15592324.2016.1261231 URL |
[64] |
Chen M K, Wilson R L, Palme K, et al. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia[J]. Plant Physiology, 2013, 162(4):1978-1991.
doi: 10.1104/pp.113.218198 URL |
[65] |
Tameshige T, Okamoto S, Lee J S, et al. A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis[J]. Current Biology, 2016, 26(18):2478-2485.
doi: S0960-9822(16)30765-5 pmid: 27593376 |
[66] |
Kim Y S, Kim S G, Park J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell, 2006, 18(11):3132-3144.
doi: 10.1105/tpc.106.043018 URL |
[67] |
Ehsan H, Reichheld J P, Roe D J L. TOUSLED kinase activity oscillates during the cell cycle and interacts with chromatin regulators[J]. Plant Physiology, 2004, 134(4):1488-1499.
doi: 10.1104/pp.103.038117 URL |
[68] |
Engelhorn J, Reimer J J, Leuz I, et al. Development-related PcG target in the apex 4 controls leaf margin architecture in Arabidopsis thaliana[J]. Development, 2012, 139(14):2566-2575.
doi: 10.1242/dev.078618 pmid: 22675210 |
[1] | Guan Sijing, Gao Jing, Xu Rongrong, Ge Tiantian, Wang Nan, Yan Yonggang, Zhang Gang, Chen Ying, Liu Aping, Cheng Mengge. Auxin Response Factor (ARF) Gene Family in Glycyrrhiza uralensis Fisch.: Identification and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 20-27. |
[2] | . Effects of Auxin and Gibberellin on Growth and Development of Sicyos angulatus Seedling [J]. Chinese Agricultural Science Bulletin, 2019, 35(27): 65-71. |
[3] | . Development of Plant Leaf Margin: Advances in Research [J]. Chinese Agricultural Science Bulletin, 2019, 35(1): 50-56. |
[4] | . Auxin Regulating Plant Growth and Development: Research Progress [J]. Chinese Agricultural Science Bulletin, 2018, 34(24): 34-40. |
[5] | . Plants AUX/IAA Gene Family: Research Progress [J]. Chinese Agricultural Science Bulletin, 2018, 34(15): 89-92. |
[6] | . Effect of Biological Pesticides on Prevention and Treatment of Autumn Tomato Virus Diseases in Greenhouse [J]. Chinese Agricultural Science Bulletin, 2016, 32(7): 104-108. |
[7] | . Over-expression of the Auxin Influx Carrier Gene PtAUX1 of Populus tomentosa Carr. Alters Organs Morphology [J]. Chinese Agricultural Science Bulletin, 2012, 28(16): 42-46. |
[8] | Wang Rong, Yan Chunxia. Hops root transplanting tissue culture experiments Research [J]. Chinese Agricultural Science Bulletin, 2009, 25(16): 184-186. |
[9] | Guo Fangjun, Han Jinfeng, Zhang Jianzhong. Effects of Application of Auxin on Enzyme Activity and Chemical Components in Flue-curd Tobacco [J]. Chinese Agricultural Science Bulletin, 2006, 22(8): 279-279. |
[10] | Ke cunxiang. A Study of rooting on Begonia semperflorens Link et Otto’s cuttings [J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 331-331. |
[11] | Huang Aiying, Wang Sangen. Identification the Effect of Endogenous Auxin in Maize Root Tip on Its Root Cap Specific Gene Using in Situ Hybridization [J]. Chinese Agricultural Science Bulletin, 2006, 22(1): 26-26. |
[12] | Zong Yichen, Yu Ning, Liu Xingchen. Effect of Spraying BN-2 Auxin on Olive Fruit Setting During the Blooming Period [J]. Chinese Agricultural Science Bulletin, 2005, 21(4): 125-125. |
[13] | Liu Yinghui, Yuan Jincheng, Kang Yanhong. Process of Studies on Hormone Controlling Plant Apical Dominance [J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 86-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||