Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (34): 34-42.doi: 10.11924/j.issn.1000-6850.casb2021-0696
Previous Articles Next Articles
Ma Huimin1,2(), Sun Peilin1,2, Ma Chunquan1,2(
)
Received:
2021-07-21
Revised:
2021-08-20
Online:
2021-12-05
Published:
2022-01-06
Contact:
Ma Chunquan
E-mail:mi937354428@163.com;chqm@hlju.edu.cn
CLC Number:
Ma Huimin, Sun Peilin, Ma Chunquan. Salt Tolerance Function of Transcription Factor BvM14-GAI[J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0696
[1] |
Bing Yu, Jinna Li, Jin Koh, et al. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress[J]. Journal of Proteomics, 2016, 143:286-297.
doi: S1874-3919(16)30132-4 pmid: 27233743 |
[2] | 邹奕, 吴则东, 兴旺, 等. 甜菜种质资源遗传多样性研究进展[J]. 中国糖料, 2018, 40(5):73-76,80. |
[3] | 伍国强, 刘海龙, 李智强. 甜菜组织培养与植株再生体系的建立[J]. 中国糖料, 2018, 40(6):14-18. |
[4] | 黄春燕, 苏文斌, 樊福义, 等. NaCl胁迫对不同苗龄甜菜生长及生理特性的影响[J]. 华北农学报, 2019, 34(5):163-169. |
[5] | 郭德栋, 康传红, 刘丽萍, 等 异源三倍体甜菜(VVC)无融合生殖的研究[J]. 中国农业科学, 1999(4):3-7,113-114. |
[6] | 杨乐. 盐胁迫下甜菜M14品系的比较蛋白质组学分析[D]. 哈尔滨:黑龙江大学, 2012. |
[7] | 马春泉, 孙培琳, 李海英. BvM14-GAI基因的克隆及亚细胞定位[J]. 中国农学通报, 2020, 36(16):28-33. |
[8] | 王玮, 管利萍, 张静, 等. 拟南芥DELLA蛋白编码基因RGA和GAI的原核表达和多克隆抗体制备[J]. 兰州大学学报:自然科学版, 2016, 52(3):422-428. |
[9] |
Blanco-Touriñán Noel, Serrano-Mislata Antonio, Alabadí David. Regulation of DELLA proteins by post-translational modifications[J]. Plant and Cell Physiology, 2020, 61(11):1891-1901.
doi: 10.1093/pcp/pcaa113 pmid: 32886774 |
[10] |
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7):1-13.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447 |
[11] |
Zhang Yongqiang, Liu Zhongjuan, Wang Xiaoyun, et al. DELLA proteins negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis through interaction with the transcription factor WRKY6[J]. Plant Cell Reports, 2018, 37(7):981-992.
doi: 10.1007/s00299-018-2282-9 URL |
[12] |
Antonio Serrano-Mislata, Stefano Bencivenga, Max Bush, et al. DELLA genes restrict inflorescence meristem function independently of plant height[J]. Nature Plants, 2017, 3(9):749-754.
doi: 10.1038/s41477-017-0003-y pmid: 28827519 |
[13] |
Mingqi Zhou, Hu Chen, Donghui Wei, et al. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature[J]. Scientific Reports, 2017, 7:39819.
doi: 10.1038/srep39819 pmid: 28051152 |
[14] | 王树林. 马铃薯StGRAS基因家族鉴定与StGAI基因克隆及其遗传转化[D]. 兰州:甘肃农业大学, 2019. |
[15] | Patrick Achard, Hui Cheng, Liesbeth De Grauwe, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311. |
[16] |
Zang Dandan, Wang Chao, Ji Xiaoyu, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities[J]. Plant Science, 2015, 235:111-121.
doi: 10.1016/j.plantsci.2015.02.016 pmid: 25900571 |
[17] | 王春生. 大豆GmGAI基因参与赤霉素调控开花时间的功能研究[D]. 哈尔滨:东北农业大学, 2020. |
[18] | Saima Arain. 光通过调节拟南芥中GAI蛋白提高抗盐性[D]. 北京:中国农业科学院, 2013. |
[19] | Takeshi Ito, Kanako Okada, Jutarou Fukazawa, et al. DELLA-dependent and -independent gibberellin signaling[J]. Plant Signaling & Behavior, 2018, 13(3):e1445933. |
[20] | 李明, 冷冰莹, 张晗菡, 等. 盐胁迫下调控玉米胞内Na+/K+比稳定的主要机制与措施[J]. 山东农业科学, 2021, 53(6):133-138. |
[21] |
Wei Dandan, Zhang Wen, Wang Cuicui, et al. Genetic engineering of the biosynjournal of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants[J]. Plant Science, 2017, 257:74-83.
doi: S0168-9452(16)30618-5 pmid: 28224920 |
[22] |
Yu Haoqiang, Wang Yingge, Yong Taiming, et al. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli[J]. Gene, 2014, 549(1):77-84.
doi: 10.1016/j.gene.2014.07.049 pmid: 25046139 |
[23] |
Lai Shujung, Lai Meichin, Lee Renjye, et al. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress[J]. Plant Molecular Biology, 2014, 85(4-5):429-441.
doi: 10.1007/s11103-014-0195-8 pmid: 24803410 |
[24] | 王南博. 西藏野生大麦耐旱特异蛋白与相关基因鉴定及外源甜菜碱缓解大麦干旱胁迫生理机理的研究[D]. 杭州:浙江大学, 2015. |
[25] |
Fan Weijuan, Zhang Min, Zhang Hongxia, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase[J]. PLoS ONE, 2012, 7(5):e37344.
doi: 10.1371/journal.pone.0037344 URL |
[26] |
Niu Xiangli, Xiong Fangjie, Liu Jia, et al. Co-expression of ApGSMT and ApDMT promotes biosynjournal of glycine betaine in rice (Oryza sativa L.) and enhances salt and cold tolerance[J]. Environmental and Experimental Botany, 2014, 104:16-25.
doi: 10.1016/j.envexpbot.2014.03.003 URL |
[27] |
Yang Xinghong, Liang Zheng, Lu Congming. Genetic engineering of the biosynjournal of glycinebetaine enhances photosynjournal against high temperature stress in transgenic tobacco plants[J]. Plant Physiology, 2005, 138(4):2299-2309.
pmid: 16024688 |
[28] | Li Shufen, Li Feng, Wang Jianwei, et al. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings[J]. Plant, Cell & Environment, 2011, 34(11):1931-1943. |
[29] |
Song Jiuling, Zhang Rui, Yue Dan, et al. Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields[J]. Plant Science, 2018, 274:369-382.
doi: S0168-9452(18)30252-8 pmid: 30080625 |
[30] |
Mansour Mohamed Magdy F, Ali Esmat Farouq. Glycinebetaine in saline conditions: an assessment of the current state of knowledge[J]. Acta Physiologiae Plantarum, 2017, 39(2):1-17.
doi: 10.1007/s11738-016-2300-x URL |
[1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[2] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[3] | YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93. |
[4] | ZHANG Yuyang, ZHOU Xue, LIU Lingyi, XU Wujun, REN Xuqin, WANG Guanglong, XIONG Aisheng. Garlic Chitinase Gene AsCHI1: Identification and Its Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 23-29. |
[5] | LI Sen, FENG Di, ZHANG Jingmin, ZHU Haiyan, PENG Dianliang, WANG Zhihe, WANG Qinqin. Effects of Fulvic Acid Potassium on Germination and Seedling Growth of Cherry Radish Under NaCl Solution Hydroponics [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 48-53. |
[6] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[7] | XIAO Yang, LI Qingrong, XING Dongxu, YANG Qiong. Effects of High Temperature Stress on Antioxidant Enzyme Activity and Gene Expression in Larvae of Silkworm Varieties with Different Tolerance [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 111-118. |
[8] | YI Jiawen, FENG Di, ZHU Wei, QI Na, TENG Fengkui, LU Xiaoyin. Salt Tolerance of Rice Varieties at Germination Stage: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 10-14. |
[9] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[10] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[11] | LV Wei, LI Shengnan, FENG Guojun, YANG Xiaoxu, LIU Chang, YAN Zhishan, LIU Dajun. Physiological and Biochemical Analysis of Exogenous Melatonin for Reducing Propamocarb Residues in Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 107-113. |
[12] | GUO Dongsen, WANG Lin, WEI Qishun, CUI Lianming, ZHOU Ying, GUO Chengbao. Physiological Regulation Effect of Feather Biodegradation Liquid on Chinese Cabbage Growth in Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 25-29. |
[13] | MA Guifang, XIN Haibo, XIU Li, SUN Chaoxia, ZHANG Hua. Buckwheat Seed Shelling Characters: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 19-27. |
[14] | HUANG Pingsheng, LIU Shinan, LI Ting, QIN Yonghua. Effects of Exogenous Silicon on Photosynthesis and Chlorophyll Fluorescence Characteristics and Antioxidant Enzymes of Cryptocarya concinna Seedlings Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 32-38. |
[15] | WANG Yan, LI Lingzhi, GUO Wenzhong, WEN Jiangli, LI Yinkun, FAN Fengcui, WU Yuesheng, LI Haiping. Effects of Humic Acid on the Growth, Physiology and Water Use Efficiency of Zucchini Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 47-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||