Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (9): 101-108.doi: 10.11924/j.issn.1000-6850.casb2021-0485
Special Issue: 生物技术; 现代农业发展与乡村振兴; 农业工程; 水稻
Previous Articles Next Articles
ZHANG Shuangyan(), REN Hao, DING Wenqing, WU Yutao
Received:
2021-05-10
Revised:
2021-06-10
Online:
2022-03-25
Published:
2022-04-02
CLC Number:
ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0485
胶黏剂 | 施胶量 | 密度/(g/cm3) | 含水率/% | 吸水厚度膨胀率/% | 抗弯强度/MPa | 内结合强度/MPa | |
---|---|---|---|---|---|---|---|
2 h | 24 h | ||||||
DN-8号低毒脲醛胶[ | 12% | 0.80~0.83 | 4.10~5.40 | 0.86~0.89 | - | 15.75~17.6 | - |
改性酚醛树脂胶[ | 20% | 0.87 | 9.40 | - | 7.10 | 18.30 | 0.84 |
异氰酸酯改性脲醛树脂胶[ | 3% MDI+8% UF | 0.89 | 3.28 | 5.82 | 14.50 | 22.76 | 0.42 |
2% PMDI+8% UF | 0.70 | - | 0.78 | 3.87 | 12.7 | 0.45 | |
改性大豆蛋白胶[ | 10% | 0.84 | 8.20 | 14.84 | 22.33 | - | 0.61 |
胶黏剂 | 施胶量 | 密度/(g/cm3) | 含水率/% | 吸水厚度膨胀率/% | 抗弯强度/MPa | 内结合强度/MPa | |
---|---|---|---|---|---|---|---|
2 h | 24 h | ||||||
DN-8号低毒脲醛胶[ | 12% | 0.80~0.83 | 4.10~5.40 | 0.86~0.89 | - | 15.75~17.6 | - |
改性酚醛树脂胶[ | 20% | 0.87 | 9.40 | - | 7.10 | 18.30 | 0.84 |
异氰酸酯改性脲醛树脂胶[ | 3% MDI+8% UF | 0.89 | 3.28 | 5.82 | 14.50 | 22.76 | 0.42 |
2% PMDI+8% UF | 0.70 | - | 0.78 | 3.87 | 12.7 | 0.45 | |
改性大豆蛋白胶[ | 10% | 0.84 | 8.20 | 14.84 | 22.33 | - | 0.61 |
预处理方式 | 胶黏剂 | 密度/(g/cm3) | 抗弯强度/MPa | 抗弯弹性模/GPa | 内结合强/MPa |
---|---|---|---|---|---|
100℃水煮1 h[ | 柠檬酸胶黏剂 | 0.80 | 9.21 | - | 0.49 |
130℃蒸汽处理[ | 15% PF | 1.00 | 14.11 | 2.93 | - |
6% NaOH处理[ | 15% PF | 1.00 | 24.11 | 2.76 | - |
NaOH+H2O2处理[ | 大豆蛋白胶 | 0.80 | 17.90 | 2.717 | 0.35 |
预处理方式 | 胶黏剂 | 密度/(g/cm3) | 抗弯强度/MPa | 抗弯弹性模/GPa | 内结合强/MPa |
---|---|---|---|---|---|
100℃水煮1 h[ | 柠檬酸胶黏剂 | 0.80 | 9.21 | - | 0.49 |
130℃蒸汽处理[ | 15% PF | 1.00 | 14.11 | 2.93 | - |
6% NaOH处理[ | 15% PF | 1.00 | 24.11 | 2.76 | - |
NaOH+H2O2处理[ | 大豆蛋白胶 | 0.80 | 17.90 | 2.717 | 0.35 |
增强纤维 | 添加量/% | 胶黏剂 | 密度/(g/cm3) | 含水率/% | 吸水厚度膨胀率/% | 抗弯强度/MPa | 抗弯弹性模量/GPa | |
---|---|---|---|---|---|---|---|---|
2 h | 24 h | |||||||
蔗渣[ | 25 | 15% UF | 0.77 | 3.90 | 3.70 | - | 15.70 | - |
剑麻头[ | 25 | 15% UF | 0.71 | 4.70 | 4.10 | - | 16.20 | - |
硬杂木[ | 25 | 15% UF | 0.72 | 2.60 | 3.90 | - | 17.60 | - |
木质刨花[ | 50 | 7% MDI/UF (3:4) | 0.80 | 7.10 | 6.82 | - | 15.80 | - |
松木屑[ | 50 | 大豆蛋白胶 | 0.77 | 6.35 | 3.57 | 11.37 | 6.16 | 0.76 |
木质刨花[ | 上下表层各20 | 表层8% PF 芯层11% PF | 0.66 | - | - | 15.30 | 30.50 | 4.35 |
木质刨花[ | 上下表层各20 | 表层12% UF 芯层5% MDI | 0.77 | - | - | - | 21.28 | 4.09 |
黄麻布[ | 上下各一层 | 大豆蛋白胶 | 0.82 | 9.50 | 24.00 | 30.00 | 28.00 | 3.50 |
增强纤维 | 添加量/% | 胶黏剂 | 密度/(g/cm3) | 含水率/% | 吸水厚度膨胀率/% | 抗弯强度/MPa | 抗弯弹性模量/GPa | |
---|---|---|---|---|---|---|---|---|
2 h | 24 h | |||||||
蔗渣[ | 25 | 15% UF | 0.77 | 3.90 | 3.70 | - | 15.70 | - |
剑麻头[ | 25 | 15% UF | 0.71 | 4.70 | 4.10 | - | 16.20 | - |
硬杂木[ | 25 | 15% UF | 0.72 | 2.60 | 3.90 | - | 17.60 | - |
木质刨花[ | 50 | 7% MDI/UF (3:4) | 0.80 | 7.10 | 6.82 | - | 15.80 | - |
松木屑[ | 50 | 大豆蛋白胶 | 0.77 | 6.35 | 3.57 | 11.37 | 6.16 | 0.76 |
木质刨花[ | 上下表层各20 | 表层8% PF 芯层11% PF | 0.66 | - | - | 15.30 | 30.50 | 4.35 |
木质刨花[ | 上下表层各20 | 表层12% UF 芯层5% MDI | 0.77 | - | - | - | 21.28 | 4.09 |
黄麻布[ | 上下各一层 | 大豆蛋白胶 | 0.82 | 9.50 | 24.00 | 30.00 | 28.00 | 3.50 |
水泥类型 | 稻壳粒径/μm | 稻壳掺量百分比/% | 含水率/% | 密度/(g/cm3) | 吸水率/% | 导热系数/[W/(m·K)] | 抗折强度/MPa |
---|---|---|---|---|---|---|---|
普通硅酸盐水泥[ | 3000 | 1 | - | 2.19 | 3.92 | - | 8.07 |
氯氧镁水泥[ | 150 | 3 | 7.05 | 1.56 | 16.71 | 0.50 | 9.38 |
水泥类型 | 稻壳粒径/μm | 稻壳掺量百分比/% | 含水率/% | 密度/(g/cm3) | 吸水率/% | 导热系数/[W/(m·K)] | 抗折强度/MPa |
---|---|---|---|---|---|---|---|
普通硅酸盐水泥[ | 3000 | 1 | - | 2.19 | 3.92 | - | 8.07 |
氯氧镁水泥[ | 150 | 3 | 7.05 | 1.56 | 16.71 | 0.50 | 9.38 |
[1] | 李文军, 蒋寅魁, 黄海啸, 等. 稻壳/聚丙烯绿色复合材料的制备及性能研究[J]. 塑料工业, 2020, 48(5):99-102,160. |
[2] | 缪菊红, 姚义俊, 裴世鑫. 材料综合实验中融入节能减排理念的探索与实践[J]. 实验技术与管理, 2020, 37(12):233-236. |
[3] | 周治. 我国农业秸秆高值化利用现状与困境分析[J]. 中国农业科技导报, 2021, 23(2):9-16. |
[4] |
LIOU T H, WANG P Y. Utilization of rice husk wastes in synjournal of graphene oxide-based carbonaceous nanocomposites[J]. Waste management, 2020, 108:51-61.
doi: 10.1016/j.wasman.2020.04.029 URL |
[5] | NASIR M, KHALI D P, JAWAID M, et al. Recent development in binderless fiber-board fabrication from agricultural residues: A review[J]. Construction & building materials, 2019, 211:502-516. |
[6] | 石峰, 何春霞, 朱碧华, 等. 4种植物壳纤维成分及理化性能对比研究[J]. 南京农业大学学报, 2017, 40(2):359-365. |
[7] | PĿNAR T, SEVIL Y, ÇIĞDEM K. Review on a novel biosilica source for production of advanced silica-based materials: Wheat husk[J]. Asia-Pacific journal of chemical engineering, 2018, 14(1):1-14. |
[8] | MARQUES B, TADEU A, ANTÓNIO J, et al. Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products[J]. Construction & building materials, 2020, 239:1-20. |
[9] | 范诗建, 常铮, 陈兵. 稻壳纤维改性磷酸镁水泥基复合材料试验研究[J]. 河北工业大学学报, 2015, 44(4):115-118. |
[10] |
ZHANG S P, SU Y H, DING K, et al. Effect of inorganic species on torrefaction process and product properties of rice husk[J]. Bioresource technology, 2018, 265:450-455.
doi: 10.1016/j.biortech.2018.06.042 URL |
[11] |
SURESH S, SUDHAKARA D, VINOD B. Investigation on industrial waste eco-friendly natural fiber-reinforced polymer composites[J]. Journal of bio- and tribo-corrosion, 2020, 6(2):40-53.
doi: 10.1007/s40735-020-00339-w URL |
[12] |
ISMAIL M, REJAB M R M, SIREGAR J P, et al. Mechanical properties of hybrid glass fiber/rice husk reinforced polymer composite[J]. Materials today: proceedings, 2020, 27(Part 2):1749-1755.
doi: 10.1016/j.matpr.2020.03.660 URL |
[13] | 王春红, 支中祥, 任子龙, 等. 稻壳纤维粒径和掺量分数对水泥复合材料性能的影响[J]. 复合材料学报, 2018, 35(6):1582-1589. |
[14] | 陈希, 王志杰, 王建. 常见四种阔叶材纤维形态和化学成分的研究[J]. 湖南造纸, 2009(1):5-6,9. |
[15] | 赵林波. 稻壳板发展的技术历程[J]. 东北林业大学学报, 2005, 33(3):83-84. |
[16] |
KUROKOCHIA Y, SATOA M. Properties of binderless board made from rice straw: The morphological effect of particles[J]. Industrial crops and products, 2015, 69:55-59.
doi: 10.1016/j.indcrop.2015.01.044 URL |
[17] | 赵林波. 异氰酸酯胶稻壳板生产工艺实验[J]. 东北林业大学学报, 2001, 29(2):83-85. |
[18] |
LEIVA P, CIANNAMEA E, RUSECKAITE R, et al. Medium-density particleboards from rice husks and soybean protein concentrate[J]. Journal of applied polymer science, 2008, 106(2):1301-1306.
doi: 10.1002/(ISSN)1097-4628 URL |
[19] | MEBEMENE C, ROSENKRANZ A, PICHELIN F, et al. Feasibility study on the production of particleboard from maize cobs, rice husks, and groundnut shells using acacia mimosa tannin extract as the bonding adhesive[J]. Journal of architectural engineering, 2014, 20(1):1-10. |
[20] | 李兰亭, 孙世良, 李晓平, 等. 稻壳板最佳制板工艺条件研究[J]. 东北林业大学学报, 1992, 20(5):49-54. |
[21] | 李兰亭. 脲醛树脂稻壳板平面抗拉强度的研究[J]. 东北林业大学学报, 1988, 16(6):68-73. |
[22] | 王谷怡, 于红卫, 洪郑, 等. 纯稻壳板制造工艺与性能研究[J]. 林产工业, 2020, 57(5):28-33. |
[23] | 赵林波, 赵长全. 复合胶稻壳板生产工艺[J]. 东北林业大学学报, 2005, 33(2):93-94. |
[24] |
TORKAMAN J. Mechanism of bondability in UF-bonded rice husk particle boards by isocyanate[J]. Journal of applied sciences, 2019, 19(3):247-251.
doi: 10.3923/jas.2019.247.251 URL |
[25] | KARIUKI S W, WACHIRA J, KAWIRA M, et al. Characterization of prototype formulated particleboards from agroindustrial lignocellulose biomass bonded with chemically modified cassava peel starch[J]. Advances in materials science & engineering, 2019:1-5. |
[26] |
CIANNAMEA E M, MARTUCCI J F, STEFANI P M, et al. Bonding quality of chemically-modified soybean protein concentrate-based adhesives in particleboards from rice husks[J]. Journal of the american oil chemists’ society, 2012, 89(9):1733-1741.
doi: 10.1007/s11746-012-2058-2 URL |
[27] |
NDAZI B S, KARLSSON S, TESHA J V, et al. Chemical and physical modifications of rice husks for use as composite panels[J]. Composites part a: applied science and manufacturing, 2007, 38(3):925-935.
doi: 10.1016/j.compositesa.2006.07.004 URL |
[28] |
SEJATI P S, KUSUMAH S S, DWIANTO W, et al. Modification of rice biomass wastes for eco-friendly particleboard[J]. IOP conference series: earth and environmental science, 2020, 572:012005.
doi: 10.1088/1755-1315/572/1/012005 URL |
[29] |
CIANNAMEA E M, STEFANI P M, RUSECKAITE R A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives[J]. Bioresource technology, 2010, 101(2):818-825.
doi: 10.1016/j.biortech.2009.08.084 URL |
[30] | 蒋远舟, 向仕龙, 曾莫南. 植物纤维增强稻壳板的研制[J]. 林业科技开发, 1990(2):16-18. |
[31] | 罗鹏, 杨传民, 计宏伟. 热压工艺对稻壳-木材复合材料性能影响的研究[J]. 林业科技, 2005, 30(6):36-39. |
[32] |
RAYA I, RAMDANI N, KARIM A, et al. Modifying of particle boards from rice husk and pinus merkusii sawdust and using soybean waste waters based adhesive[J]. Journal of physics: conference series, 2018, 979(1):012057.
doi: 10.1088/1742-6596/979/1/012057 URL |
[33] |
KANG C W, OH S W, LEE T B, et al. Sound absorption capability and mechanical properties of a composite rice hull and sawdust board[J]. Journal of Wood science, 2012, 58(3):273-278.
doi: 10.1007/s10086-011-1243-5 URL |
[34] |
KWON J H, AYRILMIS N, HAN T H. Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers[J]. Composites, part b: engineering, 2013, 44(1):728-732.
doi: 10.1016/j.compositesb.2012.01.045 URL |
[35] | 孙建飞, 肖生苓, 王昊宇, 等. 工艺参数对稻壳-木刨花复合包装板力学性能的影响[J]. 东北林业大学学报, 2015, 43(2):91-97. |
[36] |
NICOLAO E S, LEIVA P, CHALAPUD M C, et al. Flexural and tensile properties of biobased rice husk-jute-soybean protein particleboards[J]. Journal of Building Engineering, 2020, 30:101261.
doi: 10.1016/j.jobe.2020.101261 URL |
[37] | 解俊英, 肖生苓, 杜亚洲, 等. 基于老化性能的稻壳/木刨花复合包装箱板的优化工艺[J]. 包装工程, 2019, 40(5):80-88. |
[38] | 庞瑶, 赵宗琳, 梅诗意, 等. 稻塑生态复合材料在家具与室内外装饰中的应用[J]. 家具与室内装饰, 2018,(12):114-115. |
[39] | 彭思来, 蔡红珍, 柏雪源, 等. 稻壳粉/聚乙烯复合材料性能的研究[J]. 林产工业, 2007, 34(1):24-26. |
[40] | 姚雪霞, 张越, 刘玉涛, 等. 高填充稻壳/HDPE复合材料物理和力学性能的研究[J]. 化工新型材料, 2015, 43(12):128-130. |
[41] | 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050. |
[42] | 任海洋, 蔡家伟. 聚丙烯/稻壳粉复合材料在建筑模板中的应用[J]. 塑料科技, 2016, 44(5):42-45. |
[43] | 靳玲, 徐冬梅, 王杰, 等. 多种PVC基植物纤维复合材料性能对比研究[J]. 上海塑料, 2020(4):10-18. |
[44] | 唐婷, 何栋. 植物纤维/PVC木塑复合材料制备及其性能分析[J]. 粘接, 2019, 40(8):80-82. |
[45] | 姜良朋, 何春霞, 王磊, 等. 四种植物纤维/高密度聚乙烯木塑复合材料耐海水腐蚀性能比较[J]. 复合材料学报, 2019, 36(7):1625-1632. |
[46] |
MOHAMED S A N, ZAINUDIN E S, SAPUAN S M, et al. Energy behavior assessment of rice husk fibres reinforced polymer composite[J]. Journal of Materials research and technology, 2020, 9(1):383-393.
doi: 10.1016/j.jmrt.2019.10.067 URL |
[47] | 陈冬梅, 姜良朋, 刘丁宁, 等. 四种壳类纤维/聚氯乙烯木塑复合材料的蠕变及磨损性能[J]. 复合材料学报, 2018, 35(6):1464-1471. |
[48] | 蔡红珍, 柏雪源, 易维明, 等. 稻壳与聚乙烯复合材料力学性能的研究[J]. 农机化研究, 2007(11):229-232. |
[49] |
RAGHU N, KALE A, CHAUHAN S, et al. Rice husk reinforced polypropylene composites: mechanical, morphological and thermal properties[J]. Journal of the Indian academy of wood science, 2018, 15(1):96-104.
doi: 10.1007/s13196-018-0212-7 URL |
[50] | 王春红, 任子龙, 刘胜凯, 等. 回收塑料/稻壳粉木塑复合材料的制备及性能研究[J]. 工程塑料应用, 2015, 43(2):39-43. |
[51] | 袁杰, 路琴, 唐健锋. GF及偶联剂改性PVC/稻壳木塑复合材料[J]. 工程塑料应用, 2017, 45(2):42-45,55. |
[52] | 唐健锋, 路琴, 袁杰, 等. 纳米CaCO3及偶联剂对聚氯乙烯/稻壳木塑复合材料摩擦性能的影响[J]. 化工新型材料, 2018, 46(1):210-213. |
[53] | 王宣博, 陈小丹, 陈佳伟, 等. 纳米TiO2含量对PVC/稻壳粉木塑复合材料性能的影响[J]. 工程塑料应用, 2016, 44(7):31-36. |
[54] | RAHMAN M R, ISLAM M N, HUQUE M M, et al. Effect of chemical treatment on rice husk (RH) reinforced polyethylene (PE) composites[J]. Bioresources, 2010, 5(2):854-869. |
[55] | 葛铁军, 刘晓洋, 李瑞雄. 界面相容剂对生物质复合材料性能的影响[J]. 塑料科技, 2020, 48(1):105-108. |
[56] | 王磊, 何春霞, 杨星星. 四种预处理方法对稻壳/聚氯乙烯复合材料抗老化及热学行为[J]. 复合材料学报, 2019, 36(11):2587-2594. |
[57] | 刘杰胜, 伍玲玲, 丁一, 等. 不同粒径稻壳墙体材料基本性能研究[J]. 武汉轻工大学学报, 2017, 36(3):92-95. |
[58] |
CHABIA E, DOKOB V, HOUNKPÈC S P, et al. Study of cement composites on addition of rice husk[J]. Case Studies in Construction Materials, 2020, 12:e00345.
doi: 10.1016/j.cscm.2020.e00345 URL |
[59] | 王明江. 稻壳/稻草纤维水泥基材料的制备与性能[D]. 哈尔滨:哈尔滨工业大学, 2012. |
[60] | 韩福芹, 邵博, 王清文, 等. CMC-g-PMMA 改性稻壳碎料-水泥复合材料的性能[J]. 林业科学, 2009, 45(7):101-105. |
[61] | 陈墨, 熊德胜, 韩福芹. CMC-g-PMMA对稻壳-水泥复合材料耐久性能的影响[J]. 新型建筑材料, 2011(10):31-33. |
[62] |
PAKRAVAN H R, JAMSHIDI M, ASGHARIAN J A A. Combination of ground rice husk and polyvinyl alcohol fiber in cementitious composite[J]. Journal of environmental management, 2018, 215:116-122.
doi: 10.1016/j.jenvman.2018.03.035 URL |
[1] | REN Xvrui, WANG Yihui, YANG Hongyu, YUAN Liang, ZHAO Yue. Resource Utilization System of Agricultural Organic Waste After Centralized Recovery and Treatment: A Case Study of Xingxian Village in Gannan County [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 74-79. |
[2] | Zhang Binyan, Li Xiaoying, Qin Wenjing, Lu Xingmei. Effects of Biochar with Different Particle Sizes on Soil Nitrogen and Phosphorus Loss in Shilin Stony Desertification Farmland [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 68-74. |
[3] | Shen Meng, Quan Xinhua, Yuan Ye, Song Xiaoya, Zheng Qiaoping, Wang Ruisen, Yao Xiangtan. Effects of Ficus carica Sawdust on Growth and Yield of Edible Fungi [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 50-56. |
[4] | Yang Qizhi, Zhao Qingqing, Chen Qingjun, Zhang Guoqing, Liu Guiping. Agronomic Character Analysis of Stropharia rugoso-annulata Cultivated in Solar Greenhouse with Different Formulas and Preparation Techniques [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 59-65. |
[5] | Peng Zhihong, Chu Fei, Li Gou, Yang Wei. Technical Model of In-situ Fertilizer Utilization of Agricultural Wastes in Hunan Province [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 36-39. |
[6] | Zhu Jing, Bai Yuchao, Wang Zongkang, Zhang Xinming. Effects of Rice Husk Biochar and Zeolite on Phosphorus Availability in Latosolic Red Soil and Fluvo-aquic Soil [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 93-99. |
[7] | Tian Yanhong, Yan Fengchao, Li Peng, Zhao Xiaofeng. Different Organic Fertilizer Quantities Affect the Growth and Yield of Maize [J]. Chinese Agricultural Science Bulletin, 2020, 36(19): 13-17. |
[8] | . Microbial Inoculum Affects the Industrial Composting of Chicken Manure and Rice Husk [J]. Chinese Agricultural Science Bulletin, 2019, 35(35): 87-93. |
[9] | 黄德青,邱良祝 and . Analysis of Potential Biochar Production from Rice Residue in Quang Ninh, Vietnam [J]. Chinese Agricultural Science Bulletin, 2017, 33(31): 81-86. |
[10] | YANG Shu-Ling. Effects of Bacteria and Accessories of Chicken Manure Compost [J]. Chinese Agricultural Science Bulletin, 2014, 30(24): 56-60. |
[11] | . Plans for the Development of Green Agriculture Based on Biogas Net Construction in China [J]. Chinese Agricultural Science Bulletin, 2013, 29(8): 147-153. |
[12] | Song Falong, Ma Youhua, Jiang Yun, Hu Hongxiang, Yu Hongmei, He Jinling, Huang Jieying. Study on the Effect of Agricultural Wastes as Substitute for Peat in Materials of Slope Ecology Protection [J]. Chinese Agricultural Science Bulletin, 2009, 25(13): 226-229. |
[13] | Gu Jie, Li Shengxiu, Qin Qingjun, Li Minglei, Gao Hua. Changes of some Hydrolase activities during Agricultural Waste Materials Composting in high Temperature and static State [J]. Chinese Agricultural Science Bulletin, 2005, 21(5): 32-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||