Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (9): 56-65.doi: 10.11924/j.issn.1000-6850.casb2021-0484
Previous Articles Next Articles
SHI Minjing(), DING Huan, TIAN Weimin(
)
Received:
2021-05-10
Revised:
2021-08-13
Online:
2022-03-25
Published:
2022-04-02
Contact:
TIAN Weimin
E-mail:pzbsmjzifeng@163.com;wmtian@163.com
CLC Number:
SHI Minjing, DING Huan, TIAN Weimin. The Latex Flow Mechanism in Rubber Tree (Hevea brasiliensis Muell. Arg.): A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 56-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0484
[1] | GOMEZ J B. Anatomy of Hevea and its influence on latex production[A]. Kuala Lumper: Malaysia Rubber Research and Development Board. 1982. |
[2] | 田维敏, 史敏晶, 谭海燕, 等. 橡胶树树皮结构与发育[M]. 北京: 科学出版社, 2015. |
[3] | DE FAŸ E, HÉBANT C, JACOB J L. Cytology and cytochemistry of the laticiferous system[M]. In:d’Auzac J, Jacob JL, Chrestin H(eds). Physiology of rubber tree latex. Florida: CRC Press. 1989. |
[4] | D’AUZAC J. Transmembrane transport mechanism application to the laticiferous system[C]. In:Compte-rendu du colloque exploitation-physiology et amelioration del ‘Hevea. IRCA-CIRAD. 1988. |
[5] | GOMEZ J B. Comparative ultracytology of young and mature latex vessels in Hevea brasiliensis[C]. in Proc Int Rubber Conf.1975, Rubber Research Institute Malaysia, Kuala Lumpur. 1976. |
[6] |
CORNISH K, WOOD D F, WINDLE J J. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane[J]. Planta, 1999, 210:85-96.
doi: 10.1007/s004250050657 URL |
[7] |
BROWN D, FEENEY M, AHMADI M, et al. Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis[J]. J exp bot, 2017, 68(18):5045-5055.
doi: 10.1093/jxb/erx331 URL |
[8] | 史敏晶, 吴继林, 郝秉中, 等. 橡胶树橡胶粒子起源的超微结构分析[J]. 林业科学, 2016, 52(2):114-119. |
[9] | CORNISH K, XIE W. Natural rubber biosynjournal in plants: rubber transferase[J]. Method enzymol, 2012, 515:63-82. |
[10] |
BERTHELOT K, LECOMTE S, ESTEVEZ Y, et al. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins[J]. Biochimie, 2014, 106:1-9.
doi: 10.1016/j.biochi.2014.07.002 URL |
[11] |
TANG C, YANG M, FANG Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature plants, 2016, 2:16073.
doi: 10.1038/nplants.2016.73 URL |
[12] |
GUO D, YANG Z P, LI H L, et al. The 14-3-3 protein HbGF14a interacts with a RING zinc finger protein to regulate the expression of rubber transferase gene from Hevea brasiliensis[J]. J exp bot, 2018, 69(8):1903-1912.
doi: 10.1093/jxb/ery049 URL |
[13] | 谢全亮, 于莉, 袁博轩, 等. 产胶植物蛋白质组研究进展[J]. 热带作物学报, 2021, 42(2):599-609. |
[14] |
YAMASHITA S, TAKAHASHI S. Molecular mechanisms of natural rubber biosynjournal[J]. Annu rev biochem, 2020, 89(1):821-851.
doi: 10.1146/annurev-biochem-013118-111107 URL |
[15] | D’AUZAC J, PRÉVÔT J C, JACOB J L. What’s new about lutoids? A vacuolar system model from Hevea latex[J]. Plant physiol bioch, 1995, 33(6):765-777. |
[16] |
GIDROL X, CHRESTIN H, MOUNOURY G, et al. Early activation by ethylene of the tonoplast H +-pumping ATPase in the latex from Hevea brasiliensis[J]. Plant physiol, 1988, 86:899-903.
doi: 10.1104/pp.86.3.899 URL |
[17] |
WANG X, SHI M, WANG D, et al. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis[J]. J proteome res, 2013, 12(11):5146-5159.
doi: 10.1021/pr400378c URL |
[18] |
WANG X, WANG D, SUN Y, et al. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production[J]. Sci rep, 2015, 5:13778.
doi: 10.1038/srep13778 URL |
[19] |
DUPONT J, MOREAU F, LANCE C, JACOB J L. Phospholipid composition of the membrane of lutoids from Hevea brasiliensis latex[J]. Phytochemistry, 1976, 15(8):1215-1217.
doi: 10.1016/0031-9422(76)85080-7 URL |
[20] | SOUTHORN W, YIP E. Latex flow studies.Ⅲ. Electrostatic consideration in the colloidal stability of fresh Hevea latex[J]. J rubber res inst Malaya, 1968, 20:201. |
[21] | 程成, 史敏晶, 田维敏. 巴西橡胶树胶乳中黄色体破裂指数测定方法的优化[J]. 热带作物学报, 2012, 33(7):1197-1203. |
[22] | JACOB J L, ESCHBACH J M, PRÉVÔT J L, et al. Physiological basis of latex diagnosis of the functioning of the laticiferous system in rubber trees[C]. in Proc Int Rubber Conf, 1985. |
[23] |
SHI M J, CAI F G, TIAN W M. Ethrel-stimulated prolongation of latex flow in the rubber tree (Hevea brasiliensis Muell. Arg.): A Hev b 7-like protein acts as a universal antagonist of rubber particle aggregating factors from lutoids and C-serum[J]. J biochem, 2016, 159(2):209-216.
doi: 10.1093/jb/mvv095 URL |
[24] |
SHI M, LI Y, DENG S, et al. The formation and accumulation of protein-networks by physical interactions in the rapid occlusion of laticifer cells in rubber tree undergoing successive mechanical wounding[J]. BMC plant biology, 2019, 19:8.
doi: 10.1186/s12870-018-1617-6 URL |
[25] |
WITITSUWANNAKUL R, PASITKUL P, KANOKWIROON K, et al. A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation[J]. Phytochemistry, 2008a, 69(2):339-347.
doi: 10.1016/j.phytochem.2007.08.019 URL |
[26] |
BARBOSA M S, SOUZA B S, SALES A C S, et al. Antifungal proteins from plant Latex[J]. Curr protein pept sc, 2020, 21(5):497-506.
doi: 10.2174/1389203720666191119101756 URL |
[27] |
DENG X, GUO D, YANG S, et al. Jasmonate signalling in the regulation of rubber biosynjournal in laticifer cells of rubber tree, Hevea brasiliensis[J]. J exp bot., 2018, 69(15):3559-3571.
doi: 10.1093/jxb/ery169 URL |
[28] |
WITITSUWANNAKUL R, PASITKUL P, JEWTRAGOON P, et al. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation[J]. Phytochemistry, 2008b, 69(3):656-662.
doi: 10.1016/j.phytochem.2007.09.021 URL |
[29] | ARCHER B L, AUDLEY B G, MC SWEENEY GP, et al. Studies on the composition of latex serum and bottom fraction[J]. J rubber res inst Malaya, 1969, 21(4):560-569. |
[30] | D’AUZAC J, JACOB J L, CHRESTIN H. Physiology of rubber tree latex[M]. Boca Raton: CRC Press, 1989. |
[31] |
JACOB J L, PREVOT J C, D'AUZAC J. Physiological activators of invertase from Hevea brasiliensis latex[J]. Phytochemistry, 1982, 21(4):851-853.
doi: 10.1016/0031-9422(82)80078-2 URL |
[32] | ARISZ W H. Over de factoren dre het interlocien van de latex bepalen bih Hevea brasiliensis[J]. Arch rubbercult, 1918, 2:357 |
[33] | ARISZ W H. Physiology van het tappen[J]. Arch rubbercult, 1928, 12:347. |
[34] |
BUTTERY B R, BOATMAN S G. Turgor pressures in phloem: measurements on Hevea latex[J]. Science, 1964, 145(3629):285-286.
doi: 10.1126/science.145.3629.285 URL |
[35] |
BUTTERY B R, BOATMAN S G. Manometric measurement of turgor pressures in laticiferous phloem tissues[J]. J exp bot, 1966, 17(2):283-296.
doi: 10.1093/jxb/17.2.283 URL |
[36] | 安锋, 曾宪海, 林位夫. 橡胶树乳管膨压的测定技术及其变化规律[J]. 热带作物学报, 2010, 31(1):151-157. |
[37] | 刘实忠, 罗世巧, 许闻献, 等. 橡胶树导胶生理特性研究初探[J]. 热带作物研究, 1997(2):1-5. |
[38] |
GOODING E G B. Study in the physiology of latex. II. Latex flow on tapping Hevea brasiliensis associated changes in trunk diameter and latex concentration[J]. New phytol, 1952, 51:11-29.
doi: 10.1111/nph.1952.51.issue-1 URL |
[39] |
AN F, CAHILL D, ROOKES J, et al. Real-time measurement of phloem turgor pressure in Hevea brasiliensis with a modified cell pressure probe[J]. Botanical studies, 2014, 55:19.
doi: 10.1186/1999-3110-55-19 URL |
[40] | CHEN L Y, SHI D Q, ZHANG W J, et al. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells[J]. Nat commun, 2015, 16(6):6030. |
[41] | STEUDLE E. Water deficits: plant responses from cell to community[M]. Oxford, UK: Bios Scientific Publishers, 1993:5-36. |
[42] | 张保才, 周奕华. 植物细胞壁形成机制的新进展[J]. 中国科学, 2015, 45(6):544-556. |
[43] | IVAKOV A, PERSSON S. Plant Cell Walls[M]. In: eLS. John Wiley & Sons, Ltd: Chichester. 2012:1-17. |
[44] | 杨淑敏, 刘杏娥, 尚莉莉, 等. 竹材木质素特性及表征方法研究进展[J]. 材料导报(A), 2020, 34(4):7177-7182. |
[45] | 程曦, 郝怀庆, 彭励. 植物细胞壁中纤维素合成的研究进展[J]. 热带亚热带植物学报, 2011, 19(3):283-290. |
[46] |
BONAWITZ N D, KIM J I, TOBIMATSU Y, et al. Disruption of mediator rescues the stunted growth of a lignin- deficient Arabidopsis mutant[J]. Nature, 2014, 509:376-380.
doi: 10.1038/nature13084 URL |
[47] |
LIU Q, LUO L, ZHENG L. Lignins: biosynjournal and biological functions in plants[J]. Int J Mol Sci, 2018, 19, 335; doi: 10.3390/ijms19020335
doi: 10.3390/ijms19020335 URL |
[48] | 郭亚玉, 许会敏, 赵媛媛, 等. 植物木质化过程及其调控的研究进展[J]. 中国科学, 2020, 50(2):111-122. |
[49] | 何康, 黄宗道. 热带北缘橡胶树栽培[M]. 广州: 广东科技出版社, 1987. |
[50] | 晁金泉, 陈月异, 杨署光, 等. 巴西橡胶树HbCCoAOMT基因克隆及其表达分析[J]. 热带作物学报, 2016, 37(12):1-7. |
[51] | ZHANG W, WEI R, CHEN S, et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis[J]. Physiol plant, 2015, 154(2):283-296. |
[52] |
BARROS J, SERK H, GRANLUND I, et al. The cell biology of lignification in higher plants[J]. Ann bot, 2015, 115:1053-1074.
doi: 10.1093/aob/mcv046 URL |
[53] |
YOON J, CHOI H, AN G. Roles of lignin biosynjournal and regulatory genes in plant development[J]. J integr plant biol, 2015, 57(11):902-912.
doi: 10.1111/jipb.v57.11 URL |
[54] |
ZHAO Q. Lignification: Flexibility, biosynjournal and regulation[J]. Trends plant sci, 2016, 21:713-721.
doi: 10.1016/j.tplants.2016.04.006 URL |
[55] |
BALMANT K M, NOBLE J D, ALVES F C, et al. Xylem systems genetics analysis reveals a key regulator of lignin biosynjournal in Populus deltoids[J]. Genome res, 2020, 30:1131-1143.
doi: 10.1101/gr.261438.120 URL |
[56] |
BONAWITZ N D, CHAPPLE C. The genetics of lignin biosynjournal: Connecting genotype to phenotype[J]. Annu rev genet, 2010, 44:337-363.
doi: 10.1146/genet.2010.44.issue-1 URL |
[57] | 黄成, 李来庚. 植物次生细胞壁加厚调控研究进展[J]. 植物生理学报, 2016, 1:8-18. |
[58] |
ZHONG R, LEE C, YE Z H. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis[J]. Mol plant, 2010, 3:1087-1103.
doi: 10.1093/mp/ssq062 URL |
[59] |
TAYLOR-TEEPLES M, LIN L, DE LUCAS M, et al. An Arabidopsis gene regulatory network for secondary cell wall synjournal[J]. Nature, 2015, 517:571-575.
doi: 10.1038/nature14099 URL |
[60] | 刘彤, 杨文凤, 校现周, 等. 巴西橡胶树HbMYB20基因的克隆及其对拟南芥次生壁发育的调控[J]. 林业科学, 2015, 51(4):52-59. |
[61] | 仇键, 刘彤, 王帆, 等. 巴西橡胶树HbMYB52基因的克隆及其在拟南芥中的表达[J]. 热带亚热带植物学报, 2016, 24(6):671-679. |
[62] | 肖再云, 校现周. 橡胶粒子束缚水分的生理功能初析[J]. 中国农学通报, 2009, 25(3):140-143. |
[63] | FREY-WYSSLING A. Investigations on the dilution reaction and the movement of the latex of Hevea brasiliensis during tapping[J]. Arch rubbercult, 1932, 16:285-327. |
[64] | FREY-WYSSLING A. Latex flow, in deformation and flow in biological systems[M]. Ed. North-Holland, Amsterdam, 1952. |
[65] |
PRESTON G M, AGRE P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family[J]. Proc natl acad sci USA, 1991, 88(24):11110-11114.
doi: 10.1073/pnas.88.24.11110 URL |
[66] | MAUREL C. Aquaporins and water permeability of plant membranes[J]. Annu rev plant physi plant mol biol, 1997, 48:399-429. |
[67] | CHRISPEELS M J, MORILLON R, MAUREL C. Aquaporins in plants: structure, function, regulation, and roles in plant water relations[J]. Curr top membr, 2001, 51:277-334. |
[68] |
TOURNAIRE-ROUX C, SUTKA M, JAVOT H, et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins[J]. Nature, 2003, 425:393-397.
doi: 10.1038/nature01853 URL |
[69] |
ALLEVA K, NIEMIETZ C M, SUTKA M, et al. Plasma membrane of B. vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations[J]. J exp bot, 2006, 57:609-621.
doi: 10.1093/jxb/erj046 URL |
[70] |
JONES D G, DANGL J L. The plant immune system[J] Nature, 2006, 444(11):323-329.
doi: 10.1038/nature05286 URL |
[71] |
LECOURIEUX D, RANJEVA R, PUGIN A. Calcium in plant defence-signalling pathways[J]. New phytol, 2006, 171(2):249-269.
doi: 10.1111/nph.2006.171.issue-2 URL |
[72] | 阮想梅, 李登弟, 李学宝. 植物水孔蛋白的功能和调控[J]. 植物生理学通讯, 2009, 45(1):1-7. |
[73] | LI G W, SANTONI V, MAUREL C. Plant aquaporins: roles in plant physiology[J]. Biochimica et biophysica acta, 2013, 1840(5):1574-1582. |
[74] | 孙琳琳, 辛士超, 强晓晶, 等. 非生物胁迫下植物水通道蛋白的应答与调控[J]. 植物营养与肥料学报, 2015, 21(4):1040-1048. |
[75] |
KIM Y X, STUMPF B, SUNG J, et al. The relationship between turgor pressure change and cell hydraulics of midrib parenchyma cells in the leaves of Zea mays[J]. Cells, 2018, 7, 180; doi: 10.3390/cells7100180.
doi: 10.3390/cells7100180 URL |
[76] |
FOTIADIS D, JENOE P, MINI T, et al. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes[J]. J biol chem, 2001, 276(3):1707-1714.
doi: 10.1074/jbc.M009383200 URL |
[77] | TUNGNGOEN K, SAKR S, KONGSAWADWORAKUL P, et al. Aquaporin genes expression in the trunk phloem and in the laticifers of rubber tree. 见: 陈秋波,周建南,林位夫(主编).2004 年国际橡胶研究与发展委员会国际会议论文集. 2006.北京:中国农业出版社:125-134. |
[78] |
TUNGNGOEN K, KONGSAWADWORAKUL P, VIBOONJUN U, et al. Involvement of HbPIP2; 1 and HbTIP1; 1 aquaporins in ethylene stimulation of latex yield, through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis[J]. Plant physiol, 2009, 151(2):843-856.
doi: 10.1104/pp.109.140228 URL |
[79] | 庄海燕. 巴西橡胶树水通道蛋白基因cDNA的克隆及其在乙烯利刺激下表达的初步分析[D]. 杨陵:西北农林科技大学, 2010. |
[80] | ARISZ W H. On the flow of latex in the tapping of Hevea[J]. Arch Rubber Cult, 1920, 4:319-330. |
[81] | SOUTHORN W A. Local changes in bark dimensions of Hevea brasiliensis very close to the tapping cut[J]. J rubber res inst Malaya, 1967, 20:36-43. |
[82] | BOATMAN S G. Preliminary physiological studies on the promotion of latex flow by plant growth regulators[J]. J rubber res inst Malaya, 1966, 19:243-258. |
[83] | SOUTHORN W A. Latex flow studies.Ⅰ. electron microscopy of Hevea brasiliensis in the region of the tapping cut[J]. J rubber res inst Malaya, 1968, 20(4):176-186. |
[84] | WOO C H. Rubber coagulation by enzymes of Hevea brasiliensis latex[J]. J rubber res inst Malaya, 1973, 23(5):323-332. |
[85] | WOO C H. “Coagulase” from the fraction of Hevea latex[J]. J rubber res inst Malaya, 1976, 24(4):227-232. |
[86] |
GIDROL X, CHRESTIN H, TAN H L, et al. Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex[J]. J biol chem, 1994, 269(12):9278-9283.
doi: 10.1016/S0021-9258(17)37104-1 URL |
[87] |
WITITSUWANNAKUL R, RUKSEREE K, KANOKWIROON K, et al. A rubber particle protein specific for hevea latex lectin binding involved in latex coagulation[J]. Phytochemistry, 2008c, 69(5):1111-1118.
doi: 10.1016/j.phytochem.2007.12.007 URL |
[88] | 郝秉中, 吴继林, 谭海燕. 橡胶树乳管切割后的堵塞研究[J]. 热带作物学报, 1996, 17(1):1-6. |
[89] | HAO B Z, WU J L, MENG C X, et al. Laticifer wound plugging in Hevea brasiliensis: The role of protein-network with rubber particle aggregations in stopping latex flow and protecting wounded laticifers[J]. J rubb res, 2004, 7(4):281-299. |
[90] | 李言, 史敏晶, 陈月异, 等. 新型排胶调节剂对橡胶树无性系热研 8-79 的增产效应[J]. 热带作物学报, 2015, 36(10):1785-1790. |
[91] | 高政权, 孟春晓, 吴继林, 等. 巴西橡胶树乳管肌动蛋白细胞骨架与采胶的关系[J]. 热带作物学报, 2003, 24(3):22-26. |
[92] |
MAUCH F, MAUCH MB, BOLLER T. Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase[J]. Plant physiol, 1988, 88(3):936-942.
doi: 10.1104/pp.88.3.936 URL |
[93] |
PARIJS J V, BROEKARET W F, GOLDSTEIN I J, et al. Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex[J]. Planta, 1991, 183(2):258-264.
doi: 10.1007/BF00197797 URL |
[94] |
SCHLUMBAUM A, MAUCH F, VÖGELI U, et al. Plant chintinases are potent inhibitors of fungal growth[J]. Nature, 1986, 324:365-367.
doi: 10.1038/324365a0 URL |
[95] |
LA CLAIRE JW. Actin cytoskeleton in intact and wounded coenocytic green algae[J]. Planta, 1989, 177(1):47-57.
doi: 10.1007/BF00392153 URL |
[96] |
PORTER K, DAY B. From filaments to function: the role of the plant actin cytoskeleton in pathogen perception, signaling and immunity[J]. J integr plant biol, 2016, 58(4):299-311.
doi: 10.1111/jipb.v58.4 URL |
[97] | SOUTHORN W A, EDWIN E E. Latex flow studies.Ⅱ. Influence of lutoids on the stability and flow Hevea latex[J]. J Rubber Res Inst Malaya, 1968, 20(4):187-200. |
[98] | 史敏晶, 陈月异, 田维敏. pH值对巴西橡胶树胶乳β-1,3-葡聚糖酶结合黄色体膜的影响[J]. 热带作物学报, 2009, 30(7):891-896. |
[99] | BRZOZOWSKA-HANOWER J, CHRESTIN H, HANOWER P, et al. pH variations between vacuolar and cytoplasmic compartments within Hevea brasiliensis latex[J]. Seasonal influence and effect of treatment by an ethylene generator: ethel. plant physiol biochem, 1979, 17:851-857. |
[100] | 校现周, 罗世巧, 许闻献, 等. 微割对橡胶无性系PR107产量及生理状况的影响[J]. 热带作物学报, 1999, 20(1):8-12. |
[101] | 许闻献, 校现周. 橡胶死皮树过氧化物酶同工酶和超氧化物歧化酶同工酶的研究[J]. 热带作物学报, 1988, 9(1):31-35. |
[102] | 校现周, 蔡磊. 乙烯利刺激对橡胶树乳管细胞活性氧代谢的影响[J]. 热带作物学报, 2003, 24(1):1-7. |
[103] | 校现周. 橡胶胶乳中R-SH的生理作用[J]. 热带作物研究, 1996(3):5-9. |
[104] | CHRESTIN H, JACOB J H. Biochemical basis for cessation of latex flow and occurrence of physiological bark dryness[J]. Pro int rubb conf,kuala lumpur, 1985, 20-42. |
[105] | JACOB J L, PREVOT J C, CHRESTIN H, et al. Glutathione reducatase and thiols in latex; their role in Hevea yield[C]. Proc IRRDB Int, coll Exp Physiol, Montpellier, France, 1984, 101-114. |
[106] | ABRAHAM P D, BLENCOWE J W, CHUA S E, et al. Novel stimulants and procedures in the exploitation of Hevea.Ⅱ.Pilot trial using 2-Chloroethyl- phosphonic acid (Ethephon) and acetylene with various tapping systems[J]. J Rubber res inst Malaya, 1971, 23(2):90-113. |
[107] |
TUPY J. The regulation of invertase activity in the latex of Hevea brasiliensis[J]. J Exp Bot, 1973b, 24:516-524.
doi: 10.1093/jxb/24.3.516 URL |
[108] | 庄海燕, 安锋, 张硕新, 等. 乙烯利刺激橡胶树增产机制研究进展[J]. 热带作物学报, 2010, 46(4):120-124. |
[109] | Coupé M, Chrestin H Physio-chemical and biochemical mechanisms of hormonal (ethylene) stimulation[M]. In: d’Auzac J,Jacob JL, Chrestin H (eds). Physiology of Rubber Tree Latex. Boca Roton: CRC Press: 1989, 295-319. |
[110] | 胡彦师, 程汉, 曾霞, 等. 13 份橡胶树新种质对乙烯利刺激割制的生理反应[J]. 中国农学通报, 2009, 25(17):282-288. |
[111] | 史敏晶, 程成, 田维敏. 乙烯利刺激对橡胶树无性系 RY8-79和 PR107排胶生理参数的影响[J]. 热带作物学报, 2015, 36(5):926-932. |
[112] | 王冬冬, 史敏晶, 杨署光, 等. 乙烯利对橡胶树乳管伤口堵塞相关蛋白基因表达和含量的影响[J]. 热带作物学报, 2016, 37(6):1122-1127. |
[113] |
WITITSUWANNAKUL D, CHAREONTHIPHAKORN N, PACE M, et al. Polyphenol oxidases from latex of Hevea brasiliensis purification and characterization[J]. Phytochemistry, 2002, 61(2):115-121.
doi: 10.1016/S0031-9422(02)00234-0 URL |
[114] | WAHLER D, GRONOVER C S, RICHTER C, et al. Polyphenol oxidase silencing affects latex coagulation in Taraxacum species[J]. Plant physiol, 2009, 151(1):334-346. |
[115] | 史敏晶, 邓顺楠, 陈月异, 等. 巴西橡胶树胶乳黄色体中多酚氧化酶的活性及其橡胶粒子凝集作用的研究[J]. 热带作物学报, 2013, 34(10):1966-1971. |
[116] | 雷东锋, 冯怡, 蒋大宗. 植物中多酚氧化酶的特征[J]. 自然科学进展, 2004, 14(6):606-614. |
[117] | SULLIVAN M L. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism[J]. Frontiers in plant science, 2015, 5:783-789. |
[1] | Zhou Huiling, Li Jiarui. The Relationship Between Fruit Structure and Storability in Table Grapes [J]. Chinese Agricultural Science Bulletin, 2005, 21(7): 239-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||