Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (25): 116-121.doi: 10.11924/j.issn.1000-6850.casb2022-0769
Previous Articles Next Articles
LAN Bo1(), YIN Changfa1, CHEN Jian1, SHI Weitao2, YANG Aiping3, ZHANG Xiaoyang4, KUANG Hongmin5, XIAO Hui6, LI Xiangmin1, YANG Yingqing1()
Received:
2022-09-05
Revised:
2022-12-04
Online:
2023-09-05
Published:
2023-08-28
LAN Bo, YIN Changfa, CHEN Jian, SHI Weitao, YANG Aiping, ZHANG Xiaoyang, KUANG Hongmin, XIAO Hui, LI Xiangmin, YANG Yingqing. Discriminant Analysis and Prediction of Rice Blast Epidemic Based on Virulence of Magnaporthe oryzae and Meteorological Factors[J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 116-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0769
年份 | 区组 | 降雨量/mm | 降雨天数/d | 温度/℃ | 上年菌群致病力/% | 上年菌群无毒基因频率/% | 发生指数 |
---|---|---|---|---|---|---|---|
2007 | A | 1295.2 | 136.2 | 19.0 | 69.73 | 26.01 | 3 |
2008 | A | 1539.0 | 138.3 | 18.3 | 67.45 | 27.32 | 2 |
2009 | A | 1382.4 | 137.0 | 18.7 | 66.37 | 28.15 | 2 |
2010 | A | 2117.3 | 161.0 | 18.3 | 67.92 | 26.95 | 3 |
2011 | A | 1272.1 | 136.7 | 18.1 | 81.63 | 22.75 | 3 |
2012 | A | 2214.8 | 178.7 | 17.9 | 83.35 | 23.25 | 3 |
2013 | A | 1454.5 | 130.0 | 18.9 | 78.01 | 22.95 | 3 |
2014 | A | 1689.7 | 150.2 | 18.7 | 54.7 | 35.75 | 3 |
2015 | A | 2296.2 | 174.8 | 18.6 | 78.49 | 32.35 | 4 |
2016 | A | 2294.6 | 165.7 | 18.9 | 86.92 | 33.15 | 4 |
2017 | A | 1720.2 | 151.1 | 18.9 | 57.96 | 32.85 | 3 |
2018 | A | 1547.7 | 157.6 | 18.8 | 65.38 | 28.38 | 2 |
2019 | A | 1722.1 | 157.5 | 18.9 | 61.57 | 39.65 | 2 |
2020 | A | 1870.9 | 157.8 | 19.0 | 62.05 | 35.65 | 2 |
2007 | B | 1264.3 | 145.0 | 19.1 | 51.62 | 34.22 | 1 |
2008 | B | 1521.5 | 141.0 | 18.5 | 68.92 | 28.65 | 3 |
2009 | B | 1527.0 | 148.0 | 18.7 | 63.75 | 33.15 | 2 |
2010 | B | 2315.2 | 163.0 | 18.3 | 81.35 | 21.56 | 4 |
2011 | B | 1074.5 | 147.0 | 18.2 | 64.82 | 30.75 | 2 |
2012 | B | 2334.7 | 186.0 | 17.9 | 83.15 | 20.16 | 4 |
2013 | B | 1328.7 | 136.0 | 19.1 | 62.01 | 31.38 | 2 |
2014 | B | 1908.7 | 159.0 | 18.7 | 69.1 | 24.65 | 3 |
2015 | B | 1919.3 | 177.0 | 18.8 | 67.55 | 22.42 | 3 |
2016 | B | 1689.1 | 167.0 | 18.8 | 61.36 | 28.83 | 2 |
2017 | B | 1638.5 | 154.0 | 19.1 | 53.75 | 36.96 | 1 |
2018 | B | 1545.2 | 155.0 | 18.5 | 55.86 | 38.79 | 1 |
2019 | B | 1749.1 | 158.0 | 18.6 | 64.21 | 31.65 | 2 |
2020 | B | 1957.1 | 171.0 | 18.7 | 65.83 | 32.47 | 2 |
2007 | C | 954.0 | 130.0 | 18.9 | 58.63 | 36.85 | 2 |
2008 | C | 1317.6 | 134.0 | 18.1 | 61.25 | 37.03 | 2 |
2009 | C | 1320.4 | 123.0 | 18.2 | 59.75 | 35.28 | 2 |
2010 | C | 1743.4 | 140.0 | 17.9 | 68.25 | 25.65 | 3 |
2011 | C | 1109.3 | 115.0 | 17.6 | 62.35 | 36.85 | 2 |
2012 | C | 1593.8 | 161.0 | 17.5 | 70.19 | 24.39 | 3 |
2013 | C | 1078.4 | 118.0 | 18.8 | 60.33 | 37.62 | 2 |
2014 | C | 2404.5 | 149.0 | 18.1 | 79.69 | 22.61 | 4 |
2015 | C | 1681.6 | 161.0 | 17.0 | 62.87 | 35.85 | 2 |
2016 | C | 1968.1 | 164.0 | 17.3 | 73.96 | 24.13 | 3 |
2017 | C | 1782.9 | 145.0 | 17.2 | 56.88 | 36.42 | 2 |
2018 | C | 1530.4 | 170.0 | 17.4 | 59.52 | 35.96 | 2 |
2019 | C | 1198.3 | 146.0 | 17.4 | 60.03 | 36.35 | 2 |
2020 | C | 2048.5 | 170.0 | 17.5 | 70.85 | 23.95 | 3 |
年份 | 区组 | 降雨量/mm | 降雨天数/d | 温度/℃ | 上年菌群致病力/% | 上年菌群无毒基因频率/% | 发生指数 |
---|---|---|---|---|---|---|---|
2007 | A | 1295.2 | 136.2 | 19.0 | 69.73 | 26.01 | 3 |
2008 | A | 1539.0 | 138.3 | 18.3 | 67.45 | 27.32 | 2 |
2009 | A | 1382.4 | 137.0 | 18.7 | 66.37 | 28.15 | 2 |
2010 | A | 2117.3 | 161.0 | 18.3 | 67.92 | 26.95 | 3 |
2011 | A | 1272.1 | 136.7 | 18.1 | 81.63 | 22.75 | 3 |
2012 | A | 2214.8 | 178.7 | 17.9 | 83.35 | 23.25 | 3 |
2013 | A | 1454.5 | 130.0 | 18.9 | 78.01 | 22.95 | 3 |
2014 | A | 1689.7 | 150.2 | 18.7 | 54.7 | 35.75 | 3 |
2015 | A | 2296.2 | 174.8 | 18.6 | 78.49 | 32.35 | 4 |
2016 | A | 2294.6 | 165.7 | 18.9 | 86.92 | 33.15 | 4 |
2017 | A | 1720.2 | 151.1 | 18.9 | 57.96 | 32.85 | 3 |
2018 | A | 1547.7 | 157.6 | 18.8 | 65.38 | 28.38 | 2 |
2019 | A | 1722.1 | 157.5 | 18.9 | 61.57 | 39.65 | 2 |
2020 | A | 1870.9 | 157.8 | 19.0 | 62.05 | 35.65 | 2 |
2007 | B | 1264.3 | 145.0 | 19.1 | 51.62 | 34.22 | 1 |
2008 | B | 1521.5 | 141.0 | 18.5 | 68.92 | 28.65 | 3 |
2009 | B | 1527.0 | 148.0 | 18.7 | 63.75 | 33.15 | 2 |
2010 | B | 2315.2 | 163.0 | 18.3 | 81.35 | 21.56 | 4 |
2011 | B | 1074.5 | 147.0 | 18.2 | 64.82 | 30.75 | 2 |
2012 | B | 2334.7 | 186.0 | 17.9 | 83.15 | 20.16 | 4 |
2013 | B | 1328.7 | 136.0 | 19.1 | 62.01 | 31.38 | 2 |
2014 | B | 1908.7 | 159.0 | 18.7 | 69.1 | 24.65 | 3 |
2015 | B | 1919.3 | 177.0 | 18.8 | 67.55 | 22.42 | 3 |
2016 | B | 1689.1 | 167.0 | 18.8 | 61.36 | 28.83 | 2 |
2017 | B | 1638.5 | 154.0 | 19.1 | 53.75 | 36.96 | 1 |
2018 | B | 1545.2 | 155.0 | 18.5 | 55.86 | 38.79 | 1 |
2019 | B | 1749.1 | 158.0 | 18.6 | 64.21 | 31.65 | 2 |
2020 | B | 1957.1 | 171.0 | 18.7 | 65.83 | 32.47 | 2 |
2007 | C | 954.0 | 130.0 | 18.9 | 58.63 | 36.85 | 2 |
2008 | C | 1317.6 | 134.0 | 18.1 | 61.25 | 37.03 | 2 |
2009 | C | 1320.4 | 123.0 | 18.2 | 59.75 | 35.28 | 2 |
2010 | C | 1743.4 | 140.0 | 17.9 | 68.25 | 25.65 | 3 |
2011 | C | 1109.3 | 115.0 | 17.6 | 62.35 | 36.85 | 2 |
2012 | C | 1593.8 | 161.0 | 17.5 | 70.19 | 24.39 | 3 |
2013 | C | 1078.4 | 118.0 | 18.8 | 60.33 | 37.62 | 2 |
2014 | C | 2404.5 | 149.0 | 18.1 | 79.69 | 22.61 | 4 |
2015 | C | 1681.6 | 161.0 | 17.0 | 62.87 | 35.85 | 2 |
2016 | C | 1968.1 | 164.0 | 17.3 | 73.96 | 24.13 | 3 |
2017 | C | 1782.9 | 145.0 | 17.2 | 56.88 | 36.42 | 2 |
2018 | C | 1530.4 | 170.0 | 17.4 | 59.52 | 35.96 | 2 |
2019 | C | 1198.3 | 146.0 | 17.4 | 60.03 | 36.35 | 2 |
2020 | C | 2048.5 | 170.0 | 17.5 | 70.85 | 23.95 | 3 |
序号 | 判别函数 | 方差解释率/% |
---|---|---|
1 | LD1=-0.003237974Rainfall+0.031923512Raining_days-0.094898323Temperature-0.152661428Pathogenicity+0.006104285Gene_frequency | 85.22 |
2 | LD2=-0.0009443542Rainfall-0.0014218725Raining_days-0.2628766829Temperature-0.1060013217Pathogenicity-0.2920317222 Gene_frequency | 11.13 |
3 | LD3=0.001853144Rainfall+0.012100144Raining_days+1.127973157Temperature-0.105364742Pathogenicity-0.070895932Gene_frequency | 3.65 |
序号 | 判别函数 | 方差解释率/% |
---|---|---|
1 | LD1=-0.003237974Rainfall+0.031923512Raining_days-0.094898323Temperature-0.152661428Pathogenicity+0.006104285Gene_frequency | 85.22 |
2 | LD2=-0.0009443542Rainfall-0.0014218725Raining_days-0.2628766829Temperature-0.1060013217Pathogenicity-0.2920317222 Gene_frequency | 11.13 |
3 | LD3=0.001853144Rainfall+0.012100144Raining_days+1.127973157Temperature-0.105364742Pathogenicity-0.070895932Gene_frequency | 3.65 |
实际指数 | 测试1 | 测试2 | 测试3 | 测试4 | 测试5 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||||
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
2 | 0 | 4 | 1 | 0 | 0 | 6 | 1 | 0 | 0 | 5 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 5 | 0 | 0 | ||||
3 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 3 | 0 | ||||
4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ||||
判别准确率/% | 80.00 | 80.00 | 80.00 | 80.00 | 90.00 |
实际指数 | 测试1 | 测试2 | 测试3 | 测试4 | 测试5 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||||
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
2 | 0 | 4 | 1 | 0 | 0 | 6 | 1 | 0 | 0 | 5 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 5 | 0 | 0 | ||||
3 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 3 | 0 | ||||
4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ||||
判别准确率/% | 80.00 | 80.00 | 80.00 | 80.00 | 90.00 |
[1] |
doi: 10.1080/15572536.2003.11833196 URL |
[2] |
兰波, 余建, 霍光华, 等. 江西稻瘟病自然病圃菌群毒性相关基因的鉴定与分析[J]. 江西农业大学学报, 2022, 44(2):377-385.
|
[3] |
张文彤, 董伟. SPSS统计分析高级教程[M]. 北京: 高等教育出版社, 2013:309.
|
[4] |
张家齐, 张毅, 石洁, 等. 基于判别分析的玉米茎腐病发生程度预测模型[J]. 植物保护, 2020, 16(2):85-90.
|
[5] |
梁振中, 黄建森. 小麦赤霉病分段预测模型的研究[J]. 植物保护学报, 1991, 18(2):117-122.
|
[6] |
王清文, 张勇, 李乐, 等. 汉中小麦条锈病流行程度的判别分析预测[J]. 中国植保导刊, 2017, 37(4):60-62.
|
[7] |
王道泽, 洪文英, 吴燕君, 等. 水稻主栽品种和气象因素对稻瘟病田间流行的影响[J]. 浙江农业学报, 2017, 29(5):791-798.
doi: 10.3969/j.issn.1004-1524.2017.05.15 |
[8] |
唐启义, 程家安, 蒋学辉, 等. 晚稻稻瘟病神经网络分区预报[J]. 植物保护学报, 2002, 29(3):205-209.
|
[9] |
殷世才, 杨和生, 保世森, 等. 陆良稻瘟病发生规律及预测预报模型应用[J]. 云南农业大学学报, 1995(10):172.
|
[10] |
李湘民, 兰波, 黄凌洪, 等. 江西省稻瘟病菌的致病性分化[J]. 植物保护学报, 2009, 36(6):497-503.
|
[11] |
汪文娟, 苏菁, 陈深, 等. 广东省侵染美香占2号的稻瘟病菌致病性及无毒基因变异分析[J]. 中国农业科学, 2022, 55(7):1346-1358.
doi: 10.3864/j.issn.0578-1752.2022.07.007 |
[12] |
邓云. 2017—2019年福建省稻瘟病菌生理小种组成与致病性[J]. 福建农林大学学报(自然科学版), 2021, 50(4):451-459.
|
[13] |
|
[14] |
doi: 10.1016/S2095-3119(17)61746-5 URL |
[15] |
doi: 10.1016/j.molp.2022.02.014 URL |
[16] |
doi: 10.1146/micro.2003.57.issue-1 URL |
[17] |
|
[18] |
doi: 10.1038/nrmicro2032 |
[1] | TANG Yang, LIU Kequn, YANG Junjie, DENG Huanhuan, DENG Aijuan, CHE Junzhi. Prediction Model of Meteorological Risk Grade for Potato Late Blight in Hubei Province Based on Discriminant Analysis [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 74-78. |
[2] | ZHAO Zhongmeng, HUANG Zhipeng, ZHAO Han, ZHANG Lu, DUAN Yuanliang, MU Chengyan, ZHOU Jian, LI Qiang. Morphological Differences Between Male and Female Populations of Gymnocypris chilianensis [J]. Chinese Agricultural Science Bulletin, 2023, 39(5): 142-147. |
[3] | LIAO Jun, FANG Hongsheng, SU Youjian, WANG Yejun, ZHANG Yongli, SUN Yulong, FANG Yage. Change Law of Water Loss in Fresh Tea Leaves Under Different Spreading Environments [J]. Chinese Agricultural Science Bulletin, 2023, 39(4): 160-164. |
[4] | ZHU Shengcui, LI Guoting, WEI Yonglin, MA Fulin, JIN Xianling, CAO Yingmin. Study on Predicting Models of Grass Yield in North Shore of Qinghai Lake [J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 109-115. |
[5] | HE Na, FAN Yuxian, YUAN Xiaokang, ZHANG Mingfa, ZHANG Sheng. Construction of Flue-cured Tobacco Yield Forecast Model in Xiangxi Autonomous Prefecture Based on Key Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2023, 39(24): 96-102. |
[6] | LEI Yuhong, LI Chunhui, TUO Shuzhen, ZHANG Yingde, MA Xiulan, GAO Chengzhong, ZHONG Cun, YAN Liangdong. Study on the Yield Forecast Model of Qaidam Lycium Barbarum based on Key Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2023, 39(23): 55-61. |
[7] | YANG Yanling, PAN Cunliang, CHEN Yanli, SHI Kan, BAI Songzhu, SIDIKE Maimaiti. Study on Variation Characteristics and Forecasting Methods of the Initial Flowering Period of Apricot Blossoms in Hami Oasis [J]. Chinese Agricultural Science Bulletin, 2023, 39(14): 105-109. |
[8] | DONG Jiarui. The Correlation Between 1000-grain Weight of Spring Wheat and Meteorological Factors in the Most Typical Area of Horqin Sandy Land [J]. Chinese Agricultural Science Bulletin, 2023, 39(12): 81-85. |
[9] | WEI Shasha, CHEN Lei, CUI Mengmeng, LI Qingbin, CAI Nadan, QIN Benben, QIU Jianrong. Correlation Between Seedling Cultivation Effects of Four Strawberry Varieties in Field and Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2023, 39(10): 95-100. |
[10] | ZHOU Zhongwen, ZHANG Moucao, LIU Ying, LIU Donghui, ZHANG Hongni, ZHANG Junlin, HAN Bo. The Influence of Meteorological Factors on Grain Filling Speed of Spring Maize in the Plateau Area of Eastern Gansu [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 94-98. |
[11] | CHEN Qingqing, WANG Chunlin, ZHANG Haishan, ZHANG Aifang. Rice Blast and Bacterial Blight of Regional Trial Rice Varieties in Anhui Province: Resistance Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 134-139. |
[12] | DONG Jiarui. Meteorological Factors in Tongliao: Effects on Sweet Potato Yield [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 75-79. |
[13] | ZENG Shaomin, CHEN Xiaoming, JIANG Cuicui, HUANG Xinzhong. Potential Adverse Meteorological Factors in Main Phenological Periods of Pear Under Year-round Rain-shelter Cultivation Without Skirt Film [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 99-103. |
[14] | LIAO Zhangbo, HE Yuanlan, MO Shendai. The Effect of Meteorological Factors on Sugarcane Yield and Research Progress of Environmental Interaction Genes [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 82-87. |
[15] | GONG Biya, OUYANG Gecheng, LIU Hui, XIAO Fulian, YANG Shuizhi, HOU Bohua, LI Xianxin, LUO Lin. The Pupation Rules of the Larvae of Bactrocera minax in Hunan [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||