| [1]Yin C Y, Duan B L, Wang X, et al. Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application [J]. Plant Sci., 2004, 167: 1091-1097. [2]Islam M R, Hu Y, Mao S, Jia P, et al. Effects of water-saving super absorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress [J]. J Sci Food Agric., 2011, 91(5): 813-819.
 [3]Chugh V, Kaur N, Gupta A K. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought [J]. Indian J Biochem Biophys., 2011, 48(1): 47-53.
 [4]Cornic G, Bukhov N G, Wiese C, et al. Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of photosystem I-dependent proton pumping [J]. Planta. 2000, 210(3): 468-477.
 [5]Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants [J]. Plant Biol (Stuttg)., 2004, 6(3):269-279.
 [6]Carmo-Silva A E, Powers S J, Keys A J, et al. Photorespiration in C4 grasses remains slow under drought conditions [J]. Plant Cell Environ., 2008, 31: 925-940.
 [7]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell., 1994, 6(2): 251-264.
 [8]Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants [J]. Curr Opin Plant Biol., 2014, 21:133-9.
 [9]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol., 2002. 53:247-273.
 [10]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses [J]. Curr Opin Plant Biol., 2003, 6: 410-417.
 [11]Himmelbach A, Yang Y, Grill E. Relay and control of abscisic acid signaling [J]. Curr Opin Plant Biol., 2003, 6(5):470-479.
 [12]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance [J]. J Exp Bot., 2007, 58(2): 221-227.
 [13]Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells [J]. Nature, 2000, 406: 731-734.
 [14]Merlot S, Mustilli A C, Genty B, et al. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation [J]. Plant J., 2002, 30(5):601-609.
 [15]Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell., 2002, 14(12): 3089-3099.
 [16]Assmann S M. OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells [J]. Trends Plant Sci., 2003, 8(4):151-153.
 [17]Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2 -mediated stomatal regulation in response to drought stress [J]. Plant Physiol., 2010, 154(3): 1232-1243.
 [18]Kar R K. Plant responses to water stress: role of reactive oxygen species [J]. Plant Signal Behav., 2011, 6(11): 1741-1745.
 [19]堵纯信,曹春景,曹青,等. 玉米杂交种郑单958 的选育与应用[J]. 玉米科学,2006,14(6):43-45,49.
 [20]张发林.玉米优良自交系郑58 的育成和应用[J].作物杂志,2001,(4):31-31.
 [21]李会勇,王利锋,唐保军,等. 玉米单交种郑单958 遗传结构及杂种优势初步研究[J]. 玉米科学,2009,17(1):28-31.
 [22]张欣,王占森,董君霞,等. 玉米杂交种先玉335 有关性状的理论探讨[J]. 中国农学通报,2010,26(16):95-98.
 [23]吴晋源,侯有良,卢保红,等. 先玉335 应用对我国玉米产业技术的影响[J]. 山西农业科学,2013,41(3):304- 306.
 [24]韩登旭,杨杰,邵红雨,等. 玉米耐旱性的配合力分析[J]. 玉米科学,2013,21(1):19-22.
 [25]Lu Y, Li Y, Zhang J, et al. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.) [J]. PLoS One, 2013, 8(1):e52126.
 [26]宋玉伟,康燕丽,刘浩,等. 多种胁迫下拟南芥气孔“开”和“闭”突变体鉴定及遗传初步分析[J]. 科学通报, 2006, 51(18): 2139-2145.
 [27]Brennan T and Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear [J]. Plant Physiol., 1997, 59: 411-416.
 [28]Gaxiola R A, Li J, Undurraga S, et al. Drought- and salt-tolerant plants result from overexpression of the AVP1 H  -pump [J]. Proc Natl Acad Sci USA., 2001, 98: 11444-11449.
 [29]Shou H, Bordallo P, Fan J B, et al. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize [J]. Proc Natl Acad Sci USA., 2004, 101: 3298-3303.
 [30]Quan R D, Shang M, Zhang H, et al. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebe- taine synthesis in maize [J]. Plant Sci., 2004, 166: 141–149.
 [31]Jones H G. The use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces [J]. Plant, Cell  Environment, 1999, (22): 1043-1055.
 
 |