中国农学通报 ›› 2020, Vol. 36 ›› Issue (33): 95-101.doi: 10.11924/j.issn.1000-6850.casb20191100863
收稿日期:
2019-11-20
修回日期:
2019-12-12
出版日期:
2020-11-25
发布日期:
2020-11-18
通讯作者:
李保珠
作者简介:
范雁婷,女,1995年出生,山西晋中人,硕士研究生,主要从事植物逆境生物学研究。通信地址:475004 河南省开封市河南大学金明校区7号组团植物逆境生物学重点实验室,Tel:13353833083,E-mail: 基金资助:
Fan Yanting(), Fan Ruonan, Zhang Hui, Li Baozhu()
Received:
2019-11-20
Revised:
2019-12-12
Online:
2020-11-25
Published:
2020-11-18
Contact:
Li Baozhu
摘要:
本研究旨在为通过遗传途径改良植物黄酮醇生物合成、植物生长发育及作物抗性提供重要的理论基础。本研究论述了黄酮醇基本生物合成途径,概括了黄酮醇类物质生物合成关键酶及其作用,归纳了黄酮醇类物质在生物合成转录水平上的调控,总结了植物中黄酮醇类物质的生物学功能,包括黄酮醇类物质在植物生长发育中的调节作用、黄酮醇类物质调控植物非生物胁迫反应以及在植物防御反应中的作用。最后对植物黄酮醇类物质的研究方向进行了展望。
中图分类号:
范雁婷, 樊若楠, 张辉, 李保珠. 植物黄酮醇生物合成及功能研究进展[J]. 中国农学通报, 2020, 36(33): 95-101.
Fan Yanting, Fan Ruonan, Zhang Hui, Li Baozhu. Biosynthesis and Function of Flavonol in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 95-101.
[1] |
Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J, 2007,50:660-677.
URL pmid: 17419845 |
[2] |
Jiang J, Zhu S, Yuan Y, et al. Transcriptomic comparison between developing seeds of yellow and black seeded Brassica napus reveals that genes influence seed quality[J]. BMC Plant Biol, 2019,19:203.
doi: 10.1186/s12870-019-1821-z URL pmid: 31096923 |
[3] |
Cheniany M, Ganjeali A. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase(C4H) genes during adventitious rooting of Juglans regia L. microshoots[J]. Acta Biol Hung, 2016,67:379-392.
doi: 10.1556/018.67.2016.4.4 URL pmid: 28000512 |
[4] |
Pollak P E, Vogt T, Mo Y, et al. Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrid[J]. Plant Physiol, 1993,102:925-932.
doi: 10.1104/pp.102.3.925 URL pmid: 12231878 |
[5] |
Han Y, Ding T, Su B, et al. Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize[J]. Int J Mol Sci, 2016,17:1-15.
doi: 10.3390/ijms17010001 URL |
[6] |
Yin Y C, Zhang X D, Gao Z Q, et al. The research progress of chalcone isomerase(CHI) in plants[J]. Mol Biotechnol, 2019,61:32-52.
URL pmid: 30324542 |
[7] |
Kaltenbach M, Burke J R, Dindo M, et al. Evolution of chalcone isomerase from a noncatalytic ancestor[J]. Nat Chem Biol, 2018,14:548-555.
doi: 10.1038/s41589-018-0042-3 URL pmid: 29686356 |
[8] |
Braune A, Engst W, Elsinghorst P W, et al. Chalcone isomerase from eubacterium ramulus catalyzes the ring contraction of flavanonols[J]. J Bacteriol, 2016,198:2965-2974.
doi: 10.1128/JB.00490-16 URL pmid: 27551015 |
[9] |
Morita Y, Takagi K, Fukuchi-Mizutani M, et al. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation[J]. Plant J, 2014,78:294-304.
doi: 10.1111/tpj.12469 URL |
[10] |
Taketa H. Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a ction of grain dormancy[J]. Genome, 2015,58:43-53.
doi: 10.1139/gen-2014-0189 URL pmid: 25932661 |
[11] |
Li X, Kim Y B, Kim Y, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat[J]. J Plant Physiol, 2013,170:1630-1636.
doi: 10.1016/j.jplph.2013.06.010 URL pmid: 23859559 |
[12] |
Nguyen N H, Kim J H, Kwon J, et al. Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1) -overexpression plants in response to abiotic stress[J]. Plant Physiol Biochem, 2016,103:133-142.
doi: 10.1016/j.plaphy.2016.03.010 URL pmid: 26990404 |
[13] |
Liu H, Su B, Zhang H, et al. Identification and functional analysis of a flavonol synthase gene from Grape Hyacinth[J]. Molecules, 2019,24:E1579.
doi: 10.3390/molecules24081579 URL pmid: 31013599 |
[14] |
Park S, Kim D H, Park B R, et al. Molecular and functional characterization of Oryza sativa flavonol synthase(OsFLS), a bifunctional dioxygenase[J]. J Agric Food Chem, 2019,67:7399-7409.
URL pmid: 31244203 |
[15] |
Falcone Ferreyra M L, Casas M I, Questa J I, et al. Evolution and expression of tandem duplicated maize flavonol synthase genes[J]. Front Plant Sci, 2012,3:101.
URL pmid: 22654889 |
[16] |
Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. Plant J, 2005,42:218-235.
doi: 10.1111/j.1365-313X.2005.02371.x URL pmid: 15807784 |
[17] |
Li S. Transcriptional control of flavonoid biosynjournal: fine-tuning of the MYB- bHLH- WD40(MBW) complex[J]. Plant Signal Behav, 2014,9:e27522.
doi: 10.4161/psb.27522 URL pmid: 24393776 |
[18] |
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol, 2001,4:447-456.
doi: 10.1016/s1369-5266(00)00199-0 URL pmid: 11597504 |
[19] |
Czemmel S, Strackem R, Weisshaarm B, et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synjournal in developing grape berries[J]. Plant Physiol, 2009,151:1513-1530.
doi: 10.1104/pp.109.142059 URL pmid: 19741049 |
[20] |
Mehrtens F, Kranz H, Bednarek P, et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynjournal[J]. Plant Physiol, 2005,138:1083-1096.
doi: 10.1104/pp.104.058032 URL pmid: 15923334 |
[21] |
Luo J, Butelli E, Hill L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synjournal in tomato: expression in fruit results in very high levels of both types of polyphenol[J]. Plant J, 2008,56:316-326.
URL pmid: 18643978 |
[22] |
Li B Z, Fan R N, Guo S Y, et al. The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynjournal[J]. Environ. Exp. Bot, 2019,166:103807.
doi: 10.1016/j.envexpbot.2019.103807 URL |
[23] |
Park N I, Li X, Thwe A A, et al. Enhancement of rutin in Fagopyrum esculentum hairy root cultures by the Arabidopsis transcription factor AtMYB12[J]. Biotechnol Lett, 2012,34:577-583.
doi: 10.1007/s10529-011-0807-1 URL pmid: 22113884 |
[24] |
Matsui K, Oshima Y, Mitsuda N, et al. Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynjournal[J]. Plant Sci, 2018,274:466-475.
doi: 10.1016/j.plantsci.2018.06.025 URL pmid: 30080636 |
[25] |
Deluc L, Barrieu F, Marchive C, et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiol, 2006,140:499-511.
doi: 10.1104/pp.105.067231 URL pmid: 16384897 |
[26] |
Zhai R, Zhao Y, Wu M, et al. The MYB transcription factor PbMYB12b positively regulates flavonol biosynjournal in pear fruit[J]. BMC Plant Biol, 2019,19:85.
URL pmid: 30791875 |
[27] |
Blanco E, Sabetta W, Danzi D, et al. Isolation and characterization of the flavonol regulator CcMYB12 from the globe artichoke[J]. Front Plant Sci, 2018,9:941.
doi: 10.3389/fpls.2018.00941 URL pmid: 30026747 |
[28] |
Falcone Ferreyra M L, Rius S, Emiliani J, et al. Cloning and characterization of a UV-B-inducible maize flavonol synthase[J]. The Plant J, 2010,62:77-91.
URL pmid: 20059741 |
[29] |
Cao Y, Xie L, Ma Y, et al. PpMYB15 and PpMYBF1 transcription factors are involved in regulating flavonol biosynjournal in Peach fruit[J]. J Agric Food Chem, 2019,67:644-652.
URL pmid: 30525549 |
[30] |
Nakatsuka T, Saito M, Yamada E, et al. Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynjournal, in gentian flowers[J]. J Exp Bot, 2012,63:6505-6517.
doi: 10.1093/jxb/ers306 URL |
[31] |
Wang N, Xu H, Jiang S, et al. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synjournal in red-fleshed apple (Malus sieversii f. niedzwetzkyana)[J]. Plant J, 2017,90:276-292.
doi: 10.1111/tpj.13487 URL pmid: 28107780 |
[32] |
Huang W, Khaldun A B, Chen J, et al. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional chinese medicinal plant, Epimedium sagittatum[J]. Front Plant Sci, 2016,7:1089.
URL pmid: 27493658 |
[33] |
Bovy A, de Vos R, Kemper M, et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1[J]. Plant Cell, 2002,14:2509-2526.
doi: 10.1105/tpc.004218 URL pmid: 12368501 |
[34] |
Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynjournal and negatively regulates the auxin response in Arabidopsis thaliana[J]. Plant J, 2013,76:901-913.
doi: 10.1111/tpj.12348 URL |
[35] |
Wang F, Zhu H, Kong W, et al. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis[J]. Planta, 2016,244:59-73.
URL pmid: 26945856 |
[36] |
Gao Y, Liu J, Chen Y, et al. Tomato SlAN11 regulates flavonoid biosynjournal and seed dormancy by interaction with bHLH proteins but not with MYB proteins[J]. Hortic Res, 2018,5:27.
doi: 10.1038/s41438-018-0032-3 URL pmid: 29872532 |
[37] |
Payyavula R S, Singh R K, Navarre D A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism[J]. J Exp Bot, 2013,64:5115-5131.
URL pmid: 24098049 |
[38] |
Tripathi A M, Niranjan A, Roy S. Global gene expression and pigment analysis of two contrasting flower color cultivars of Canna[J]. Plant Physiol Biochem, 2018,127:1-10.
URL pmid: 29544208 |
[39] |
Dalman K, Wind J J, Nemesio-Gorriz M, et al. Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynjournal and aberrant embryo development[J]. BMC Plant Biol, 2017,17:6.
doi: 10.1186/s12870-016-0952-8 URL pmid: 28061815 |
[40] |
Grunewald W, De Smet I, Lewis D R, et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynjournal[J]. Proc Natl Acad Sci USA, 2012,109:1554-1559.
doi: 10.1073/pnas.1121134109 URL pmid: 22307611 |
[41] |
Malacarne G, Coller E, Czemmel S, et al. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynjournal[J]. J Exp Bot, 2016,67:3509-3522.
doi: 10.1093/jxb/erw181 URL pmid: 27194742 |
[42] |
Schiefelbein J, Galway M, Masucci J, et al. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana[J]. Plant Physiol, 1993,103:979-985.
doi: 10.1104/pp.103.3.979 URL pmid: 8022944 |
[43] |
Tansengco M, Imaizumi-Anraku H, Yoshikawa M, et al. Pollen development and tube growth are affected in the symbiotic mutant of Lotus japonicus, crinkle[J]. Plant Cell Physiol, 2004,45:511-520.
URL pmid: 15169932 |
[44] |
Taylor L P, Grotewold E. Flavonoids as developmental regulators[J]. Curr Opin Plant Biol, 2005,8:317-323.
doi: 10.1016/j.pbi.2005.03.005 URL pmid: 15860429 |
[45] |
Mo Y, Nagel C, Taylor L P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen[J]. Proc Natl Acad Sci USA, 1992,89:7213-7217.
doi: 10.1073/pnas.89.15.7213 URL pmid: 11607312 |
[46] |
Burbulis I E, Iacobucci M, Shirley B W. A null mutation in the first enzyme of flavonoid biosynjournal does not affect male fertility in Arabidopsis[J]. Plant Cell, 1996,8:1013-1025.
URL pmid: 8672888 |
[47] |
Ylstra B, Muskens M, Tunen A. Flavonols are not essential for fertilization in Arabidopsis thaliana[J]. Plant Mol Biol, 1996,32:1155-1158.
doi: 10.1007/BF00041399 URL pmid: 9002614 |
[48] | Kim Y S, Song K, Cheong H. Effects of flavonoids on pollen tube growth in Arabidopsis thaliana[J]. J Plant Biol, 1996,39:273-278. |
[49] |
Guyon V, Tang W H, Monti M M, et al. Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, inpollen tube growth[J]. Plant J, 2004,39:643-654.
doi: 10.1111/j.1365-313X.2004.02162.x URL pmid: 15272880 |
[50] |
Maloney G S, DiNapoli K T, Muday G K. The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development[J]. Plant Physiol, 2014,166:614-631.
URL pmid: 25006027 |
[51] |
Xu J, Yu Y, Shi R, et al. Organ-specific metabolic shifts of flavonoids in scutellaria baicalensis at different growth and development stages[J]. Molecules, 2018,23:428.
doi: 10.3390/molecules23020428 URL |
[52] |
Wang L, Liu N, Wang T, et al. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynjournal[J]. J Exp Bot, 2018,69:1081-1093.
doi: 10.1093/jxb/erx475 URL pmid: 29253187 |
[53] |
Titapiwatanakun B, Blakeslee J J, Bandyopadhyay A, et al. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis[J]. Plant J, 2009,57:27-44.
URL pmid: 18774968 |
[54] |
Yin R, Han K, Heller W, et al. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots[J]. New Phytol, 2014,201:466-475.
doi: 10.1111/nph.12558 URL pmid: 24251900 |
[55] |
Nguyen H N, Kim J H, Hyun W Y, et al. TTG1-mediated flavonols biosynjournal alleviates root growth inhibition in response to ABA[J]. Plant Cell Rep, 2013,32:503-514.
URL pmid: 23306631 |
[56] |
Silva-Navas J, Moreno-Risueno M A, Manzano C, et al. Flavonols mediate root phototropism and growth through regulation of proliferation- to- differentiation transition[J]. Plant Cell, 2016,28:1372-1387.
doi: 10.1105/tpc.15.00857 URL pmid: 26628743 |
[57] |
Tohge T, Fernie A R. Specialized metabolites of the flavonol class mediate root phototropism and growth[J]. Mol Plant, 2016,9:1554-1555.
doi: 10.1016/j.molp.2016.10.019 URL pmid: 27845216 |
[58] |
Tan H, Man C, Xie Y, et al. A crucial role of GA-regulated flavonol biosynjournal in root growth of Arabidopsis[J]. Mol Plant, 2019,12:521-537.
doi: 10.1016/j.molp.2018.12.021 URL pmid: 30630075 |
[59] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010,48:909-930.
doi: 10.1016/j.plaphy.2010.08.016 URL pmid: 20870416 |
[60] |
Nakabayashi R, Yonekura-Sakakibara K, Urano K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. Plant J, 2015a,77:367-379.
URL pmid: 24274116 |
[61] |
Mahajan M, Joshi R, Gulati A, et al. Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco[J]. Plant Biol, 2012,14:725-733.
doi: 10.1111/j.1438-8677.2011.00550.x URL pmid: 22324650 |
[62] |
Meng C, Zhang S, Deng Y S, et al. Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco[J]. Plant Physiol Biochem, 2015,96:388-400.
doi: 10.1016/j.plaphy.2015.08.019 URL pmid: 26372946 |
[63] |
Chen S, Wu F, Li Y, et al. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynjournal and are involved in salinity responsiveness[J]. Front Plant Sci, 2019,10:178.
doi: 10.3389/fpls.2019.00178 URL pmid: 30846995 |
[64] |
Neugart S, Fiol M, Schreiner M, et al. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica)[J]. J Agric Food Chem, 2014,62:4054-4062.
doi: 10.1021/jf4054066 URL pmid: 24655223 |
[65] |
Zhou Z, Schenke D, Miao Y, et al. Investigation of the crosstalk between the flg22 and the UV-B-induced flavonol pathway in Arabidopsis thaliana seedlings[J]. Plant Cell Environ, 2017,40:453-455.
doi: 10.1111/pce.12869 URL pmid: 28032363 |
[66] |
Kaducová M, Monje-Rueda M D, García-Calderón M, et al. Induction of isoflavonoid biosynjournal in Lotus japonicus after UV-B irradiation[J]. J Plant Physiol, 2019,236:88-95.
doi: 10.1016/j.jplph.2019.03.003 URL pmid: 30939333 |
[67] |
Sánchez-Rodríguez E, Moreno D A, Ferreres F, et al. Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes[J]. Phytochemistry, 2011,72:723-729.
doi: 10.1016/j.phytochem.2011.02.011 URL pmid: 21420135 |
[68] |
An Y, Feng X, Liu L, et al. ALA-induced flavonols accumulation in guard cells is involved in scavenging H2O2 and inhibiting stomatal closure in Arabidopsis cotyledons[J]. Front Plant Sci, 2016b,7:1713.
URL pmid: 27895660 |
[69] |
An Y, Liu L, Chen L, et al. ALA inhibits ABA-induced stomatal closure via reducing H2O2 and Ca2+ levels in guard cells[J]. Front Plant Sci, 2016a,7:482.
doi: 10.3389/fpls.2016.00482 URL pmid: 27148309 |
[70] |
Watkins J M, Chapman J M, Muday G K. Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture[J]. Plant Physiol, 2017,175:1807-1825.
doi: 10.1104/pp.17.01010 URL pmid: 29051198 |
[71] |
Perret X, Freiberg C, Rosenthal A, et al. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234[J]. Mol Microbiol, 1999,32:415-425.
URL pmid: 10231496 |
[72] |
Kobayashi H, Naciri-Graven Y, Broughton W J, et al. Flavanoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234[J]. Mol Microbiol, 2004,51:335-347.
URL pmid: 14756776 |
[73] |
Misra P, Pandey A, Tiwari M, et al. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance[J]. Plant Physiol, 2010,152:2258-2268.
doi: 10.1104/pp.109.150979 URL pmid: 20190095 |
[74] |
Morkunas I, Woźniak A, Formela M, et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings[J]. Protoplasma, 2016,253:1063-1079.
doi: 10.1007/s00709-015-0865-7 URL pmid: 26239447 |
[1] | 孙歌, 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉. 菌根真菌及菌根辅助细菌对农作物发育的影响研究进展[J]. 中国农学通报, 2022, 38(9): 88-92. |
[2] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[3] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[4] | 黄雅丽, 马风云, 王霞, 郝军, 杜振宇, 刘方春, 石群, 马丙尧. 滴灌水量对核桃幼苗生长的影响[J]. 中国农学通报, 2022, 38(22): 62-68. |
[5] | 王晨, 张居萍, 丁晗. miR172调控植物生长发育及逆境胁迫的研究进展[J]. 中国农学通报, 2022, 38(17): 27-34. |
[6] | 方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. |
[7] | 李怀德, 崔同霞, 范重秀, 姚友旭, 惠和平. 定植密度和生长年限对黄芩生长发育和产量及种植效益的影响[J]. 中国农学通报, 2022, 38(12): 41-46. |
[8] | 于红梅, 袁华招, 关玲, 陈晓东, 唐山远, 王庆莲, 赵密珍. 低温贮藏对草莓苗的生理变化及生长发育的影响[J]. 中国农学通报, 2021, 37(9): 35-41. |
[9] | 尹文露, 刘丽, 赵谭军, 韩森荣, 宋坚, 李莹莹, 常亚青, 湛垚垚. 海胆和海参中microRNAs的研究进展[J]. 中国农学通报, 2021, 37(7): 150-158. |
[10] | 宋磊, 次仁央金, 王小强, 何燕. 小麦对高温胁迫的响应机制研究进展[J]. 中国农学通报, 2021, 37(36): 6-12. |
[11] | 闫艳, 徐丽娜, 李丽杰, 张志勇. 玉米苗期生长发育对钾浓度的响应[J]. 中国农学通报, 2021, 37(35): 1-6. |
[12] | 杜明, 方玉, 李潜龙, 康云海, 王慧, 张从合. 玉米淀粉调控的研究进展[J]. 中国农学通报, 2021, 37(33): 8-14. |
[13] | 陈路路, 孙哲, 田昌庚, 刘尚刚, 郑建利, 赵丰玲. 鲜食型紫薯新品种‘泰紫薯1号’的选育及生长发育规律研究[J]. 中国农学通报, 2021, 37(30): 25-31. |
[14] | 郭志祥, 何成兴, 普春晓, 陈福寿, 尚慧, 番华彩, 白亭亭, 曾莉. 草地贪夜蛾寄主选择性及对其生长发育的影响[J]. 中国农学通报, 2021, 37(3): 139-144. |
[15] | 王雅倩, 张尚昆, 李冬兵. 木醋液对元宝枫幼苗生长发育的影响[J]. 中国农学通报, 2021, 37(25): 41-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||