| [1] | Basu S, Ramegowda V, Kumar A, et al. Plant adaptation to drought stress[J]. F1000Research, 2016,5(F1000 Faculty Rev):1554. doi: 10.12688/f1000research    
																																					URL
 | 
																													
																						| [2] | Jung B, Ludewig F, Schulz A, et al. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots[J]. Nature Plants, 2015,1:14001. doi: 10.1038/nplants.2014.1    
																																					URL    
																																					pmid: 27246048
 | 
																													
																						| [3] | Moosavi S G R, Ramazani S H R, Hemayati S S, et al. Effect of drought stress on root yield and some morpho-physiological traits in different genotypes of sugar beet (Beta vulgaris L.)[J]. Journal of Crop Science and Biotechnology, 2017,20:167-174. doi: 10.1007/s12892-017-0009-0    
																																					URL
 | 
																													
																						| [4] | Hosseini S A, Réthoré E, Pluchon S, et al. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration[J]. International Journal of Molecular Sciences, 2019,20:3777. doi: 10.3390/ijms20153777    
																																					URL
 | 
																													
																						| [5] | Pastori G M, Foyer C H. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls[J]. Plant Physiology, 2002,129(2):460-8. URL    
																																					pmid: 12068093
 | 
																													
																						| [6] | Ghaffari H, Tadayon M R, Nadeem M, et al. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress[J]. Acta Physiologiae Plantarum, 2019,41:23. doi: 10.1007/s11738-019-2815-z    
																																					URL
 | 
																													
																						| [7] | Anjum S A, Wang L, Farooq M, et al. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought[J]. Journal of Agronomy and Crop Science, 2011,197(4):296-301. doi: 10.1111/j.1439-037X.2011.00468.x    
																																					URL
 | 
																													
																						| [8] | Sharma P, Jha A B, Dubey R S, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botony, 2012,2012:1-26. | 
																													
																						| [9] | Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009,29:185-212. | 
																													
																						| [10] | Wedeking R, Mahlein A-K, Steiner U, et al. Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography[J]. Functional Plant Biology, 2016,44:119-133. doi: 10.1071/FP16112    
																																					URL    
																																					pmid: 32480551
 | 
																													
																						| [11] | Alaei S, Mahna N, Hajilou J, et al. The effect of glycine betaine on the alleviation of drought stress in strawberry pant[J]. Ecology, Environment and Conservation, 2016,22(3):1145-1150. | 
																													
																						| [12] | Per T S, Khan N A, Reddy P S, et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics[J]. Plant Physiology and Biochemistry, 2017,115:126-140. URL    
																																					pmid: 28364709
 | 
																													
																						| [13] | Zhang M, Wang L, Zhang K, et al. Drought-induced responses of organic osmolytes and proline metabolism durng pre-flowering stage in leaves of peanut (Arachis hypogaea L.)[J]. Journal of Integrative Agriculture, 2017,16(10):2197-2205. | 
																													
																						| [14] | Ding L, Lu Z, Gao L, et al. Is nitrogen a key determinant of water transport and photosynjournal in higher plants upon drought stress[J]. Frontiers in Plant Science, 2018,9:1143. doi: 10.3389/fpls.2018.01143    
																																					URL    
																																					pmid: 30186291
 | 
																													
																						| [15] | Borišev M, Borišev I, Župunski M, et al. Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles[J]. PLoS One, 2016,11:e0166248. doi: 10.1371/journal.pone.0166248    
																																					URL    
																																					pmid: 27832171
 | 
																													
																						| [16] | Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses[J]. Plant Cell, 2005,17(7):1866-1875. doi: 10.1105/tpc.105.033589    
																																					URL    
																																					pmid: 15987996
 | 
																													
																						| [17] | Sarker U, Oba S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor[J]. Scientific Reports, 2018,8:16496. doi: 10.1038/s41598-018-34944-0    
																																					URL    
																																					pmid: 30405159
 | 
																													
																						| [18] | Szalai G, Kellös T, Galiba G, et al. Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions[J]. Journal of Plant Growth Regulation, 2009,28:66-80. doi: 10.1007/s00344-008-9075-2    
																																					URL
 | 
																													
																						| [19] | Ahmad N, Malagoli M, Wirtz M, et al. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots[J]. BMC Plant Biology, 2016,16:247. doi: 10.1186/s12870-016-0940-z    
																																					URL    
																																					pmid: 27829370
 | 
																													
																						| [20] | Hoffmann C M. Sucrose accumulation in sugar beet under drought stress[J]. Journal of Agronomy and Crop Science, 2010,196(4):243-252. | 
																													
																						| [21] | Sharp R E, Hsiao T C, Silk W K. Growth of the maize primary root at low water potentials: II. role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 1990,93(4):1337-1346. | 
																													
																						| [22] | 王秋红, 周建朝, 王孝纯. 采用SPAD仪进行甜菜氮素营养诊断技术研究[J]. 中国农学通报, 2015,31(36):92-98. | 
																													
																						| [23] | Vasantha S, Alarmelu S, Hemaprabha G, et al. Evaluation of promising sugarcane genotypes for drought[J]. Sugar Technology, 2005,7:82-83. | 
																													
																						| [24] | Laxa M, Liebthal M, Telman W, et al. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants (Basel), 2019,8(4):94. | 
																													
																						| [25] | Pirasteh-Anosheh H, Saed-Moucheshi A, Pakniyat H, et al. Water Stress and Crop Plants: A Sustainable Approach[M]. Volume 1, Wiley Blackwell, 2016 Oxford, UK. | 
																													
																						| [26] | Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant Cell and Environment, 2017,40(1):4-10. | 
																													
																						| [27] | Silva D D, Kane M E, Beeson R C. Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb[J]. Horticultural Science, 2012,47:1634-1640. | 
																													
																						| [28] | Lü P, Kang M, Jiang X, et al. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis[J]. Planta, 2013,237(6):1547-1559. doi: 10.1007/s00425-013-1867-3    
																																					URL    
																																					pmid: 23503758
 | 
																													
																						| [29] | Zhang J Y, Cruz D E Carvalho M H, et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering[J]. Plant Cell and Environment, 2014,37(11):2553-2576. | 
																													
																						| [30] | He F, Sheng M, Tang M. Effects of Rhizophagus irregularis on photosynjournal and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress[J]. Frontiers in Plant Science, 2017,8:183. doi: 10.3389/fpls.2017.00183    
																																					URL    
																																					pmid: 28261240
 | 
																													
																						| [31] | Sales C R G, Ribeiro R V, Silveira J A G, et al. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynjournal in sugarcane plants subjected to water deficit and low substrate temperature[J]. Plant Physiology and Biochemistry, 2013,73:326-336. URL    
																																					pmid: 24184453
 | 
																													
																						| [32] | Upreti K K, Murti G S R, Bhatt RM. Response of pea cultivars to water stress: changes in morpho-physiological characters, endogenous hormones and yield[J]. Journal of Vegetation Science, 2000,27:57-61. | 
																													
																						| [33] | Wahid A, Rasul E.  Photosynthesis in leaf, stem, flower and fruit[M], in: Pessarakli M. (Ed.), Handbook of Photosynthesis, 2nd ed., CRC Press, Florida, 2005: 479-497. | 
																													
																						| [34] | Anjum F, Yaseen M, Rasul E, et al. Water stress in barley (Hordeum vulgare L.). I. Effect on chemical composition and chlorophyll contents[J]. Pakistan Journal of Agricultural Science, 2003,40:45-49. | 
																													
																						| [35] | Kavar T, Maras M, Kidric M, et al. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress[J]. Molecular Breeding, 2007,21:159-172. |