中国农学通报 ›› 2021, Vol. 37 ›› Issue (7): 112-118.doi: 10.11924/j.issn.1000-6850.casb2020-0108
所属专题: 生物技术
收稿日期:
2020-05-18
修回日期:
2020-11-13
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
马瑜
作者简介:
朱海云,女,1983年出生,山东临沂人,助理研究员,硕士,研究方向为应用微生物技术。通信地址:710043 陕西省西安市雁塔区西影路76号 陕西省微生物研究所,Tel:029-89314611,E-mail: 基金资助:
Zhu Haiyun, Ma Yu(), Ke Yang, Li Bo
Received:
2020-05-18
Revised:
2020-11-13
Online:
2021-03-05
Published:
2021-03-17
Contact:
Ma Yu
摘要:
蜡样芽孢杆菌MA23对猕猴桃溃疡病病原菌丁香假单胞菌猕猴桃致病变种(Pseudomonas syringae pv. actinidiae)有较好的抑制作用,优化其发酵培养基及发酵条件将为猕猴桃溃疡病的有效防治提供参考。本研究通过正交设计实验和单因素实验分别优化其发酵培养基和摇瓶发酵条件,提高摇瓶发酵的菌体量和抑菌活性。正交实验方差分析结果显示,蛋白胨、可溶性淀粉、K2HPO4和MgSO4为高度显著因素,NaNO3为显著因素,葡萄糖为不显著因素,它们对实验结果影响由大到小表现为可溶性淀粉>K2HPO4>蛋白胨>MgSO4>NaNO3>葡萄糖,综合考虑确定最优组合为A1B4C4D1E2F2。因此,蜡样芽孢杆菌MA23的最优培养基为葡萄糖0.8%,蛋白胨0.2%,可溶性淀粉3.5%,NaNO3 0.05%,K2HPO4 0.2%,MgSO4 0.2%,CaCO3 0.12%,MnSO4 0.035%;培养基优化后,蜡样芽孢杆菌MA23发酵液的菌体量和抑菌活性分别提高了41%和37.2%。通过发酵条件优化,确定了蜡样芽孢杆菌MA23最佳发酵初始pH 6.5,最佳发酵温度为30℃,最佳接种量为8%,最佳装液量为70 mL,最佳摇床转速为180 r/min,菌体量和抑菌活性分别提高了28.2%和25.6%。通过培养基和发酵条件优化,蜡样芽孢杆菌的菌体量和抑菌活性都得到大幅提高,为其进一步应用提供了参考。
中图分类号:
朱海云, 马瑜, 柯杨, 李勃. 抗猕猴桃细菌性溃疡病蜡样芽孢杆菌MA23培养基及发酵条件优化[J]. 中国农学通报, 2021, 37(7): 112-118.
Zhu Haiyun, Ma Yu, Ke Yang, Li Bo. Optimization of Culture Medium and Fermentation Parameters of Bacillus cereus MA23 Antagonistic to Kiwifruit Canker[J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 112-118.
编号 | 因素/% | 活菌数/(×108 CFU/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Ⅰ | Ⅱ | Ⅲ | ||
1 | 3(2.4) | 3(0.15) | 3(2.5) | 1(0.05) | 1(0.1) | 2(0.2) | 5.7 | 5.5 | 6.7 | |
2 | 3 | 2(0.1) | 1(0.5) | 4(0.2) | 2(0.2) | 1(0.1) | 3 | 4.5 | 4.2 | |
3 | 1(0.8) | 1(0.05) | 1 | 1 | 1 | 1 | 5.1 | 5.8 | 6.9 | |
4 | 2(1.6) | 3 | 4(3.5) | 4 | 1 | 1 | 7.9 | 9 | 11.6 | |
5 | 1 | 3 | 2(1.5) | 3(0.15) | 2 | 1 | 9 | 5 | 8.7 | |
6 | 4(3.2) | 4(0.2) | 4 | 1 | 2 | 1 | 13.4 | 15.3 | 15.2 | |
7 | 4 | 2 | 3 | 3 | 1 | 1 | 7.0 | 5.9 | 5.4 | |
8 | 1 | 2 | 4 | 2(0.1) | 1 | 2 | 8.3 | 9.5 | 10.1 | |
9 | 3 | 1 | 4 | 3 | 2 | 2 | 13 | 13.7 | 12.9 | |
10 | 3 | 4 | 2 | 2 | 1 | 1 | 7.8 | 9.1 | 7.5 | |
11 | 4 | 1 | 2 | 4 | 1 | 2 | 10.1 | 7.5 | 7.2 | |
12 | 2 | 1 | 3 | 2 | 2 | 1 | 6.1 | 6.6 | 6.6 | |
13 | 2 | 4 | 1 | 3 | 1 | 2 | 6.8 | 6.6 | 7.2 | |
14 | 1 | 4 | 3 | 4 | 2 | 2 | 9.5 | 8.6 | 10.3 | |
15 | 4 | 3 | 1 | 2 | 2 | 2 | 7.9 | 5.9 | 7.0 | |
16 | 2 | 2 | 2 | 1 | 2 | 2 | 11 | 8.7 | 9.8 | |
K1j | 96.8 | 101.5 | 70.9 | 109.1 | 180.2 | 186.6 | ||||
K2j | 97.9 | 87.4 | 101.4 | 92.4 | 215.9 | 209.5 | ||||
K3j | 93.6 | 89.9 | 83.9 | 101.2 | ||||||
K4j | 107.8 | 117.3 | 139.9 | 93.4 |
编号 | 因素/% | 活菌数/(×108 CFU/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Ⅰ | Ⅱ | Ⅲ | ||
1 | 3(2.4) | 3(0.15) | 3(2.5) | 1(0.05) | 1(0.1) | 2(0.2) | 5.7 | 5.5 | 6.7 | |
2 | 3 | 2(0.1) | 1(0.5) | 4(0.2) | 2(0.2) | 1(0.1) | 3 | 4.5 | 4.2 | |
3 | 1(0.8) | 1(0.05) | 1 | 1 | 1 | 1 | 5.1 | 5.8 | 6.9 | |
4 | 2(1.6) | 3 | 4(3.5) | 4 | 1 | 1 | 7.9 | 9 | 11.6 | |
5 | 1 | 3 | 2(1.5) | 3(0.15) | 2 | 1 | 9 | 5 | 8.7 | |
6 | 4(3.2) | 4(0.2) | 4 | 1 | 2 | 1 | 13.4 | 15.3 | 15.2 | |
7 | 4 | 2 | 3 | 3 | 1 | 1 | 7.0 | 5.9 | 5.4 | |
8 | 1 | 2 | 4 | 2(0.1) | 1 | 2 | 8.3 | 9.5 | 10.1 | |
9 | 3 | 1 | 4 | 3 | 2 | 2 | 13 | 13.7 | 12.9 | |
10 | 3 | 4 | 2 | 2 | 1 | 1 | 7.8 | 9.1 | 7.5 | |
11 | 4 | 1 | 2 | 4 | 1 | 2 | 10.1 | 7.5 | 7.2 | |
12 | 2 | 1 | 3 | 2 | 2 | 1 | 6.1 | 6.6 | 6.6 | |
13 | 2 | 4 | 1 | 3 | 1 | 2 | 6.8 | 6.6 | 7.2 | |
14 | 1 | 4 | 3 | 4 | 2 | 2 | 9.5 | 8.6 | 10.3 | |
15 | 4 | 3 | 1 | 2 | 2 | 2 | 7.9 | 5.9 | 7.0 | |
16 | 2 | 2 | 2 | 1 | 2 | 2 | 11 | 8.7 | 9.8 | |
K1j | 96.8 | 101.5 | 70.9 | 109.1 | 180.2 | 186.6 | ||||
K2j | 97.9 | 87.4 | 101.4 | 92.4 | 215.9 | 209.5 | ||||
K3j | 93.6 | 89.9 | 83.9 | 101.2 | ||||||
K4j | 107.8 | 117.3 | 139.9 | 93.4 |
方差来源 | Ⅲ型平方和 | 自由度 | 均方 | F | P |
---|---|---|---|---|---|
矫正模型 | 3.332E+18* | 14 | 2.380E+17 | 16.826 | 0.000 |
截距 | 3.269E+19 | 1 | 3.269E+19 | 2310.567 | 0.000 |
A | 9.387E+16 | 3 | 3.129E+16 | 2.212 | 0.105 |
B | 4.654E+17 | 3 | 1.551E+17 | 10.967 | 0.000 |
C | 2.247E+18 | 3 | 7.489E+17 | 52.942 | 0.000 |
D | 1.515E+17 | 3 | 5.049E+16 | 3.569 | 0.024 |
E | 2.655E+17 | 1 | 2.655E+17 | 18.769 | 0.000 |
F | 1.093E+17 | 1 | 1.093E+17 | 7.723 | 0.009 |
误差 | 4.668E+17 | 33 | 1.415E+16 | ||
总计 | 3.649E+19 | 48 | |||
校正的总计 | 3.799E+18 | 47 |
方差来源 | Ⅲ型平方和 | 自由度 | 均方 | F | P |
---|---|---|---|---|---|
矫正模型 | 3.332E+18* | 14 | 2.380E+17 | 16.826 | 0.000 |
截距 | 3.269E+19 | 1 | 3.269E+19 | 2310.567 | 0.000 |
A | 9.387E+16 | 3 | 3.129E+16 | 2.212 | 0.105 |
B | 4.654E+17 | 3 | 1.551E+17 | 10.967 | 0.000 |
C | 2.247E+18 | 3 | 7.489E+17 | 52.942 | 0.000 |
D | 1.515E+17 | 3 | 5.049E+16 | 3.569 | 0.024 |
E | 2.655E+17 | 1 | 2.655E+17 | 18.769 | 0.000 |
F | 1.093E+17 | 1 | 1.093E+17 | 7.723 | 0.009 |
误差 | 4.668E+17 | 33 | 1.415E+16 | ||
总计 | 3.649E+19 | 48 | |||
校正的总计 | 3.799E+18 | 47 |
优化阶段 | 活菌数 | 抑菌圈半径 | |||
---|---|---|---|---|---|
数据/(CFU/mL) | 优化效率/% | 数据/cm | 优化效率/% | ||
A | 13.9±0.89 | / | 9.84±0.87 | / | |
B | 19.6±1.20 | 41.0* | 13.50±0.76 | 37.2* | |
C | 25.12±0.60 | 28.2** | 16.96±1.24 | 25.6** |
优化阶段 | 活菌数 | 抑菌圈半径 | |||
---|---|---|---|---|---|
数据/(CFU/mL) | 优化效率/% | 数据/cm | 优化效率/% | ||
A | 13.9±0.89 | / | 9.84±0.87 | / | |
B | 19.6±1.20 | 41.0* | 13.50±0.76 | 37.2* | |
C | 25.12±0.60 | 28.2** | 16.96±1.24 | 25.6** |
[1] | Haverkort A J, Boonekamp P M, Hutten R, et al. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification[J]. Potato Research, 2008,51(1):47-57. |
[2] | Velivelli S L S, De Vos P, Kromann P, et al. Biological control agents: from field to market, problems, and challenges[J]. Trends in Biotechnology, 2014,32(10):493-496. |
[3] |
Naclerio G, Ricca E, Sacco M, et al. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus[J]. Applied and Environmental Microbiology, 1993,59(12):4313-4316.
URL pmid: 8285719 |
[4] | Ghanbari M, Rezaei M, Soltani M, et al. Production of bacteriocin by a novel Bacillus sp. Strain RF 140, an intestinal bacterium of Caspian Frisian Roach (Rutilus frisii Kutum)[J]. Iranian Journal of Veterinary Research, 2009,10:267-272. |
[5] | Riley M A, Wertz J E. Bacteriocins: evolution, ecology, and application[J]. Annual Review of Microbiology, 2002,56(1):117-137. |
[6] |
Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance[J]. Pharmacological Reviews, 2003,55(1):27-55.
URL pmid: 12615953 |
[7] | Mandal H, Chakraborty P, Das S, et al. Biocontrol of virulent Ralstonia solanacearum isolates by an indigenous Bacillus cereus[J]. Journal of Agricultural Technology, 2017,13(1):19-30. |
[8] | 车建美, 刘波, 张彦, 等. 青枯病生防菌蜡状芽孢杆菌(ANTI-8098A)的绿色荧光蛋白基因(gfp)转导及其生物学特性的变化[J]. 农业生物技术学报, 2010,18(2):337-345. |
[9] |
Douriet-Gámez N R, Maldonado-Mendoza I E, Ibarra-Laclette E, et al. Genomic analysis of Bacillus sp. Strain B25, a biocontrol agent of maize pathogen Fusarium verticillioides[J]. Current Microbiology, 2018,75(3):247-255.
URL pmid: 29051980 |
[10] | 黄秋斌, 张颖, 刘凤英, 等. 蜡样芽孢杆菌B3-7在大田小麦根部的定殖动态及其对小麦纹枯病的防治效果[J]. 生态学报, 2014,34(10):2559-2566. |
[11] | 柯杨, 李勃, 齐凡. 芽孢杆菌在植物真菌病害防治中的应用[J]. 保鲜与加工, 2012,12(5):39-43. |
[12] | Banerjee G, Gorthi S, Chattopadhyay P. Beneficial effects of bio-controlling agent Bacillus cereus IB311 on the agricultural crop production and its biomass optimization through response surface methodology[J]. Anais da Academia Brasileira de Ciencias, 2017,90(S1):2149-2159. |
[13] |
Sadiq H, Jamil N. Antagonistic behaviour of organic compounds from Bacillus species and Brevundimonas specie[J]. Pakistan Journal of Pharmaceutical Sciences, 2018,31(3):919-926.
URL pmid: 29716874 |
[14] | 韩长志. 植物病害生防菌的研究现状及发展趋势[J]. 中国森林病虫, 2015,34(1):33-37,25. |
[15] | 贺字典, 高玉峰. 生防菌在植物病害防治中的研究进展[J]. 河北职业技术师范学院学报, 2003,17(2):56-59. |
[16] | Chattopadhyay P, Banerjee G, Mukherjees S. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system[J]. Biotech, 2017,7(1):60. |
[17] | Sarrau B D, Clavel T, Clerté C, et al. Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties[J]. Applied & Environmental Microbiology, 2012,78(6):1715-1723. |
[18] | Arul Jose P, Sivakala K K, Jebakumar S R D. Formulation and statistical optimization of culture medium for improved production of antimicrobial compound by Streptomyces sp. JAJ06[J]. International Journal of Microbiology, 2013: 1-9. |
[19] |
Singh P, Shera S S, Banik J, et al. Optimization of cultural conditions using response surface methodology versus artificial neural network and modeling of L-glutaminase production by Bacillus cereus MTCC 1305[J]. Bioresource Technology, 2013,137:261-269.
URL pmid: 23587828 |
[20] | Ferrante P, Takikawa Y, Scortichini M. Pseudomonas syringae pv. actinidiae strains isolated from past and current epidemics to Actinidia spp. reveal a diverse population structure of the pathogen[J]. European Journal of Plant Pathology, 2015,142(4):677-689. |
[21] | Everett K R, Taylor R K, Romberg M K, et al., First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand[J]. Australasian Plant Disease Notes, 2011,6:67-71. |
[22] | Masami N, Masao G, Katsumi A, et al. Nucleotide sequence and organization of copper resistance genes Frompseudomonas syringae pv. actinidiae[J]. European Journal of Plant Pathology, 2004,110(2):223-226. |
[23] |
Han H S, Koh Y J, Hur J S, et al. Occurrence of the strastrb streptomycin resistance genes in Pseudomonas species isolated from kiwifruit plants[J]. The Journal of Microbiology, 2004,42(4):365-368.
URL pmid: 15650697 |
[24] | 朱海云, 李勃, 李燕, 等, 丁香假单胞菌猕猴桃致病变种的遗传多样性及进化关系[J]. 微生物学杂志, 2013,33(4):72-77. |
[25] | 刘宁. 番茄灰霉病菌生防细菌BAB-1的鉴定及发酵工艺的优化[D]. 保定:河北农业大学, 2009:5-14. |
[26] | 陈燕飞. 两种细菌学检查方法的比较[J]. 中国农学通报, 2010,26(17):139-141. |
[27] | 柯杨, 马瑜, 李勃, 等. 生防枯草芽孢杆菌A97与化学杀菌剂的相容性研究[J]. 陕西农业科学, 2013(6):44-47. |
[28] | 邓振伟, 于萍, 陈玲. SPSS软件在正交试验设计、结果分析中的应用[J]. 电脑学习, 2009(5):15-17. |
[29] | 李晔, 张西轩, 曹广秀, 等. 产胶原酶的蜡样芽胞杆菌发酵条件优化及酶的分离纯化[J]. 微生物学通报, 2016,43(7):1419-1428. |
[30] | Nasser E B. Antimicrobial substances producing by air flora[J]. Arab Gulf Jourmal of Scientific Research, 2003,21:134-139. |
[31] | Nasser E B, Samar S Q. Antimicrobial activity of Bacillus cereus: isolation, identification and the effect of carbon and nitrogen source on its antagonistic activity[J]. Journal of Microbiology and Antimicrobials, 2016,8(2):7-13. |
[32] | 肖怀秋, 李玉珍. 微生物培养基优化方法研究进展[J]. 酿酒科技, 2010(1):90-94. |
[1] | 张婷婷, 马贵龙, 谢晓宝, 高新馨, 蔡奇. 贝莱斯芽孢杆菌SX-45提取物对人参根腐病菌抑菌机理研究[J]. 中国农学通报, 2022, 38(33): 124-131. |
[2] | 张煜, 李运盛, 成军, 江幸福, 刘悦秋, 吴昱颖. 国槐树枝不同溶剂提取物对植物病原菌的抑菌活性[J]. 中国农学通报, 2022, 38(33): 68-73. |
[3] | 张赫, 尤梦瑶, 万璐, 闫佳佳, 刘松梅, 郑春英. 产紫丁香苷内生真菌CJ7的鉴定及发酵条件研究[J]. 中国农学通报, 2022, 38(25): 143-150. |
[4] | 荣华, 刘龙, 郭庆元. 茶叶活性成分对梨火疫病菌的抑制活性及稳定性研究[J]. 中国农学通报, 2022, 38(24): 118-123. |
[5] | 杨晓燕, 叶伟伟, 魏善强, 张龙, 黄俊. 一株巨大芽孢杆菌发酵培养基的优化及解磷效果研究[J]. 中国农学通报, 2022, 38(15): 105-112. |
[6] | 陈云坤, 胡春艳, 张知宇, 赵艳芳, 曹挥. 5种瑞香科植提取物对7种植物病原真菌的抑菌活性测定[J]. 中国农学通报, 2022, 38(13): 148-156. |
[7] | 魏倩倩, 郑瑞瑞, 陈云坤, 胡春艳, 冯雪, 曹挥. 3种植物提取物对6种枯萎病菌的生物活性研究[J]. 中国农学通报, 2021, 37(9): 155-159. |
[8] | 吴永玲, 魏信平, 李筱玲, 魏婷, 胡美倩. 牡丹籽粕提取液对连作土壤特性及小麦全蚀病防治研究[J]. 中国农学通报, 2021, 37(26): 133-139. |
[9] | 张博, 张悦丽, 马立国, 祁凯, 刘苹, 李长松, 齐军山. 21种天然产物对小麦根腐病菌的抑菌活性[J]. 中国农学通报, 2021, 37(24): 154-158. |
[10] | 闫佳佳, 万璐, 吴桐, 郑春英. 快速溶剂萃取技术在2种食药用真菌多糖提取中的应用[J]. 中国农学通报, 2021, 37(16): 150-155. |
[11] | 梁琪, 付歆崴, 李云鹏, 杨胜甫. 3种植物提取物对稻瘟病菌的抑菌活性及其抑菌机理研究[J]. 中国农学通报, 2021, 37(15): 120-127. |
[12] | 黄蒙蒙, 何剑波, 石会玲, 凌宏志, 葛菁萍. Chlorella vulgar HDA04生长条件的初步确立[J]. 中国农学通报, 2021, 37(12): 79-85. |
[13] | 刘琳, 袁仁文, 张蕊, 王强, 马喜玲, 李珊珊, 范淑英. 芥菜提取物对西瓜枯萎病菌的抑菌活性及抑菌谱测定[J]. 中国农学通报, 2020, 36(4): 130-134. |
[14] | 张晓虎, 李倩, 魏夏夏, 刘庚玫, 何勇. 连翘果实多酚提取及其复合涂膜保鲜剂在葡萄保鲜中的应用[J]. 中国农学通报, 2020, 36(4): 135-141. |
[15] | 魏畅, 徐清云, 李月娟, 王晶, 关丽杰. 补骨脂种子提取物对水稻纹枯病菌生物活性测定[J]. 中国农学通报, 2020, 36(30): 120-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||