中国农学通报 ›› 2021, Vol. 37 ›› Issue (16): 150-155.doi: 10.11924/j.issn.1000-6850.casb2020-0429
闫佳佳1,2(), 万璐1,2, 吴桐1,3(
), 郑春英1,2(
)
收稿日期:
2020-09-07
修回日期:
2021-01-18
出版日期:
2021-06-05
发布日期:
2021-06-16
通讯作者:
吴桐,郑春英
作者简介:
闫佳佳,女,1996年出生,黑龙江齐齐哈尔人,硕士研究生,研究方向为食品和药物生物活性挖掘及研发。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,Tel:0451-86608586,E-mail: 基金资助:
Yan Jiajia1,2(), Wan Lu1,2, Wu Tong1,3(
), Zheng Chunying1,2(
)
Received:
2020-09-07
Revised:
2021-01-18
Online:
2021-06-05
Published:
2021-06-16
Contact:
Wu Tong,Zheng Chunying
摘要:
为建立快速溶剂萃取技术提取食药用真菌多糖的新方法,以猪苓、茯苓为研究对象,采用单因素及正交实验优选快速溶剂萃取法提取多糖的最佳工艺条件。结果表明,快速溶剂萃取法用于猪苓多糖提取的最佳工艺参数为提取温度110℃,提取压力110 bar,提取时间20 min,循环2次,在此条件下,猪苓多糖的含量为(7.8684±0.1096) mg/g。快速溶剂萃取法提取茯苓多糖的最佳工艺参数是提取温度110℃,提取压力120 bar,提取时间25 min,循环2次,在此条件下,茯苓多糖的含量为(8.6965±0.1087) mg/g。快速溶剂萃取技术能够快速、准确地适用于2种食药用真菌多糖的提取。
中图分类号:
闫佳佳, 万璐, 吴桐, 郑春英. 快速溶剂萃取技术在2种食药用真菌多糖提取中的应用[J]. 中国农学通报, 2021, 37(16): 150-155.
Yan Jiajia, Wan Lu, Wu Tong, Zheng Chunying. Application of Pressurized Solvent Extraction Technology in the Extraction of Polysaccharide from Two Kinds of Edible and Medicinal Fungi[J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 150-155.
组别 | 因素 | 猪苓多糖/(mg/g) | 茯苓多糖/(mg/g) | ||||
---|---|---|---|---|---|---|---|
A.PSE温度 | B.PSE压力 | C.PSE时间 | D | ||||
1 | 1 | 1 | 1 | 1 | 4.1521 | 5.4213 | |
2 | 1 | 2 | 2 | 2 | 3.1626 | 6.3118 | |
3 | 1 | 3 | 3 | 3 | 3.3846 | 6.8119 | |
4 | 2 | 1 | 2 | 3 | 5.9104 | 5.6779 | |
5 | 2 | 2 | 3 | 1 | 4.4972 | 5.8444 | |
6 | 2 | 3 | 1 | 2 | 4.2856 | 6.5893 | |
7 | 3 | 1 | 3 | 2 | 5.8114 | 8.0469 | |
8 | 3 | 2 | 1 | 3 | 6.2440 | 6.0326 | |
9 | 3 | 3 | 2 | 1 | 7.5581 | 8.4141 | |
猪苓多糖 | K1 | 10.6993 | 15.8739 | 14.6817 | ΣY=45.0060 CT=225.0600 | ||
K2 | 14.6932 | 13.9038 | 16.6311 | ||||
K3 | 19.6135 | 15.2283 | 13.6932 | ||||
R | 715.0545 | 677.1975 | 679.6495 | ||||
S | 13.2915 | 0.6725 | 1.4898 | ||||
茯苓多糖 | K1 | 18.5450 | 19.1461 | 18.0432 | ΣY=59.1502 CT=388.7496 | ||
K2 | 18.1116 | 18.1888 | 20.4038 | ||||
K3 | 22.4936 | 21.8153 | 20.7032 | ||||
R | 1177.9091 | 1173.3128 | 1170.4947 | ||||
S | 3.8868 | 2.3547 | 1.4153 |
组别 | 因素 | 猪苓多糖/(mg/g) | 茯苓多糖/(mg/g) | ||||
---|---|---|---|---|---|---|---|
A.PSE温度 | B.PSE压力 | C.PSE时间 | D | ||||
1 | 1 | 1 | 1 | 1 | 4.1521 | 5.4213 | |
2 | 1 | 2 | 2 | 2 | 3.1626 | 6.3118 | |
3 | 1 | 3 | 3 | 3 | 3.3846 | 6.8119 | |
4 | 2 | 1 | 2 | 3 | 5.9104 | 5.6779 | |
5 | 2 | 2 | 3 | 1 | 4.4972 | 5.8444 | |
6 | 2 | 3 | 1 | 2 | 4.2856 | 6.5893 | |
7 | 3 | 1 | 3 | 2 | 5.8114 | 8.0469 | |
8 | 3 | 2 | 1 | 3 | 6.2440 | 6.0326 | |
9 | 3 | 3 | 2 | 1 | 7.5581 | 8.4141 | |
猪苓多糖 | K1 | 10.6993 | 15.8739 | 14.6817 | ΣY=45.0060 CT=225.0600 | ||
K2 | 14.6932 | 13.9038 | 16.6311 | ||||
K3 | 19.6135 | 15.2283 | 13.6932 | ||||
R | 715.0545 | 677.1975 | 679.6495 | ||||
S | 13.2915 | 0.6725 | 1.4898 | ||||
茯苓多糖 | K1 | 18.5450 | 19.1461 | 18.0432 | ΣY=59.1502 CT=388.7496 | ||
K2 | 18.1116 | 18.1888 | 20.4038 | ||||
K3 | 22.4936 | 21.8153 | 20.7032 | ||||
R | 1177.9091 | 1173.3128 | 1170.4947 | ||||
S | 3.8868 | 2.3547 | 1.4153 |
成分 | 方差来源 | 离差平方和 | 自由度 | 均方 | F值 | 显著性 |
---|---|---|---|---|---|---|
猪苓多糖 | A | 13.2915 | 2 | 6.6458 | 177.6952 | <0.01 |
B | 0.6725 | 2 | 0.3363 | 9.0000 | >0.05 | |
C | 1.4898 | 2 | 0.7449 | 19.9171 | <0.05 | |
e | 0.0747 | 2 | 0.0374 | |||
茯苓多糖 | A | 3.8868 | 2 | 1.9434 | 24.6938 | <0.05 |
B | 2.3547 | 2 | 1.1774 | 14.9606 | >0.05 | |
C | 1.4153 | 2 | 0.7077 | 9.0000 | >0.05 | |
e | 0.1573 | 2 | 0.0787 |
成分 | 方差来源 | 离差平方和 | 自由度 | 均方 | F值 | 显著性 |
---|---|---|---|---|---|---|
猪苓多糖 | A | 13.2915 | 2 | 6.6458 | 177.6952 | <0.01 |
B | 0.6725 | 2 | 0.3363 | 9.0000 | >0.05 | |
C | 1.4898 | 2 | 0.7449 | 19.9171 | <0.05 | |
e | 0.0747 | 2 | 0.0374 | |||
茯苓多糖 | A | 3.8868 | 2 | 1.9434 | 24.6938 | <0.05 |
B | 2.3547 | 2 | 1.1774 | 14.9606 | >0.05 | |
C | 1.4153 | 2 | 0.7077 | 9.0000 | >0.05 | |
e | 0.1573 | 2 | 0.0787 |
[1] | Ramunė B, Paulius K, Laura T, et al. Recovery of bioactive substances from rowanberry pomace by consecutive extraction with supercritical carbon dioxide and pressurized solvents[J]. Journal of Industrial and Engineering Chemistry, 2020,85. |
[2] | Ester H C, Merichel P, María L M, et al. Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents[J]. Innovative Food Science and Emerging Technologies, 2020,60. |
[3] | Li J, Zhang S, Zhang M, et al. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box-Behnken design optimization[J]. Journal of Food Science and Technology, 2019,56(11):223-225. |
[4] | Šeregelj V, Tumbas S, Vesna M, et al. Accelerated solvent extraction of bioactive compounds from carrot: Optimization of response surface methodology[J]. Journal of the Serbian Chemical Society, 2018,83(11):231-234. |
[5] | Pimentel M S, Borrás L I, Lozano S J, et al. Pressurized GRAS solvents for the green extraction of phenolic compounds from Hibiscus sabdariffa calyces[J]. Food Research International, 2020,137:345-347. |
[6] | Yoong K L, Yang F C, Chang J S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances[J]. Carbohydrate Polymers, 2020,117006. |
[7] | 国家药典委员会. 中华人民共和国药典2020年版(一部)[M]. 北京: 中国医药科技出版社, 2020: 331. |
[8] | Zhao Y Y. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: A review[J]. Journal of Ethnopharmacology, 2013,149(1):342-345. |
[9] | Song R Q, Nan T G, Yang Y, et al. Study on polysaccharide content and monosaccharide composition of Polyporus umbellatus from different production areas[J]. China journal of Chinese Materia Medica, 2019,44(17):354-357. |
[10] |
Liu J, Zhou J, Zhang Q Q, et al. Monosaccharide analysis and fingerprinting identification of polysaccharides from Poria cocos and Polyporus umbellatus by HPLC combined with chemometrics methods[J]. Chinese Herbal Medicines, 2019,11(4):406-411.
doi: 10.1016/j.chmed.2019.05.008 URL |
[11] | Chen X D, Chong Y K, Zhang W W, et al. Discrimination of authentic Polyporus umbellatus and counterfeit by Fourier Transform Infrared and two dimensional infrared correlation spectroscopy[J]. Journal of Molecular Structure, 2020,1199. |
[12] | Kunca V, Pavlik M. Fruiting Body Production of, and Suitable Environmental Ranges for, Growing the Umbrella Polypore Medicinal Mushroom, Polyporus umbellatus (Agaricomycetes), in Natural Conditions in Central Europe[J]. International Journal of Medicinal Mushrooms, 2019,21(2):435-439. |
[13] | Zhao Y Y, Xie R M, Chao X, et al. Bioactivity-directed isolation, identification of diuretic compounds from Polyporus umbellatus[J]. Eth- nopharmacol, 2009,126:184-187. |
[14] | Guo Z H, Zang Y J, Zhang L J, et al. The efficacy of Polyporus umbellatus polysaccharide in treating hepatitis B in China[J]. Progress in Molecular Biology & Translational Science, 2019,163:329-360. |
[15] | Li H L, Yan Z, Xiong Q P, et al. Renoprotective effect and mechanism of polysaccharide from Polyporus umbellatus sclerotia on renal fibrosis[J]. Carbohydrate Polymers, 2019,212:342-345. |
[16] | Xing X K, Men J X, Song L L, et al. Do the Main Components of the Sclerotia of Umbrella Polypore Mushroom, Polyporus umbellatus (Agaricomycetes), Correlate with Armillaria Associates[J]. International Journal of Medicinal Mushrooms, 2020,22(5):57-59. |
[17] |
Liu G K, Li N, Zhang Y J, et al. LC/MS fingerprint and simultaneous quantification of main bioactive compounds in Polyporus umbellatus (Pers.) Fr. from different regions and developmental stages[J]. Microchemical Journal, 2018,15:97-101.
doi: 10.1016/0026-265X(70)90170-0 URL |
[18] | Xiong G, Li X F, Mu J J, et al. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide[J]. International Journal of Biological Macromolecules, 2020,152. |
[19] |
Zhao Y Y, Feng Y L, Du X, et al. Diuretic activity of the ethanol and aqueous extracts of the surface layer of Poria cocos in rat[J]. Ethnopharmacol, 2012,144:775-778.
doi: 10.1016/j.jep.2012.09.033 URL |
[20] |
Lee H C, Cheng W Y, Huang B E, et al. Huang Anti-inflammatory and hypoglycemic efficacy of Poria cocos and Dioscorea opposita in prediabetes mellitus rats[J]. RSC Adv, 2014,4:55649-55657.
doi: 10.1039/C4RA10539G URL |
[21] | Feng Y L, Lei P, Tian T, et al. Diuretic activity of some fractions of the epidermis of Poria cocos[J]. Journal of Ethnopharmacology, 2013,150(3):3425-3427. |
[22] |
Zhou L, Zhang Y, Gapte L A, et al. Ng Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos[J]. Chem Pharm Bull, 2008,56:1459-1462.
doi: 10.1248/cpb.56.1459 URL |
[23] |
Lin T Y, Lu M K, Chang C C. Structural identification of a fucose-containing 1,3--mannoglucan from Poria cocos and its anti-lung cancer CL1-5 cells migration via inhibition of TGF R-mediated signaling[J]. International Journal of Biological Macromolecules, 2020,157:311-318.
doi: 10.1016/j.ijbiomac.2020.04.014 URL |
[24] | Ríos J L. Chemical Constituents and Pharmacological Properties of Poria cocos[J]. Planta Med, 2011,77(7):56-59. |
[25] | Jia X J, Ma L S, Li P, et al. Prospects of Poria cocos polysaccharides: Isolation process, structural features and bioactivities[J]. Trends in Food Science & Technology, 2016,54:2-62. |
[26] |
Esteban C I. Medicinal interest of Poria cocos (= Wolfiporia extensa)[J]. Revista Iberoamericana de Micología, 2009,26(2):103-107.
doi: 10.1016/S1130-1406(09)70019-1 URL |
[27] | Zhu L, Xu J, Wang R, et al. Correlation between quality and geographical origins of Poria cocos revealed by qualitative fingerprint profiling and quantitative determination of triterpenoid acids[J]. Molecules, 2018,23:22009. |
[28] | Yang P F, Tao H, Dong W, et al. Phytochemical and chemotaxonomic study of Poria cocos (Schw.) Wolf[J]. Biochemical Systematics and Ecology, 2019,83. |
[29] |
He P F, Zhang A Q, Zhang F M. Linhardt, Peilong Sun, Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotias[J]. Carbohydrate Polymers, 2016,152:222-230.
doi: 10.1016/j.carbpol.2016.07.010 URL |
[30] |
Li W F, Zhao J M, Yao Q, et al. Polysaccharides from Poria cocos (PCP) inhibits ox-LDL-induced vascular smooth muscle cells proliferation and migration by suppressing TLR4/NF-κB p65 signaling pathway[J]. Journal of Functional Foods, 2019,60:103391.
doi: 10.1016/j.jff.2019.05.047 URL |
[31] | Feng Y N, Zhang X F. Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity[J]. International Journal of Biological Macromolecules, 2020,157. |
[32] | Yang X S, Fang C, Huang G L. Extraction and analysis of polysaccharide from Momordica charantia[J]. Industrial Crops & Products, 2020,153. |
[33] | 吴桐, 徐慧春, 郑春英, 等. 快速溶剂萃取法提取刺五加叶中的黄酮类成分[J]. 中国食品学报, 2013,13(7):59-65. |
[34] | Lin L, Wang Y, Wang F X, et al. Determination of polysaccharides content of Gentiana farreri from different producing areas based on anthrone-sulfuric acid method[J]. China Journal of Chinese Materia Medica, 2014,39(14):345-348. |
[35] | 牛雯颖. 几种常见药用真菌糖类成分分析[D]. 哈尔滨:黑龙江大学, 2008. |
[36] | Rizwan A, Niyaz A, Sadeq A, et al. Green accelerated solvent extraction (ASE) with solvent and temperature effect and green UHPLC-DAD analysis of Phenolics in Pepper fruit (Capsicum annum L.)[J]. Food Composition and Analysis, 2020,103:245-249. |
[37] | Niyaz A, Rizwan A, Wejdan S, et al. Solvent and temperature effect of accelerated solvent extraction (ASE) coupled with ultra-high-pressure liquid chromatography (UHPLC-PDA) for the determination of methyl xanthines in commercial tea and coffee[J]. Food Chemistry, 2020,311:534-540. |
[38] | 王宇晴, 牛雯颖, 郑春英, 等. 快速溶剂萃取法在灵芝多糖提取中的应用[J]. 中国调味品, 2020,45(2):107-111. |
[1] | 秦志华, 蔡晴霞, 王建琳, 王述柏, 谭子超, 张林林, 郭沛, 单虎. 乙醇加热回流法提取构树叶总黄酮工艺优化研究[J]. 中国农学通报, 2022, 38(17): 110-114. |
[2] | 朱海云, 马瑜, 柯杨, 李勃. 抗猕猴桃细菌性溃疡病蜡样芽孢杆菌MA23培养基及发酵条件优化[J]. 中国农学通报, 2021, 37(7): 112-118. |
[3] | 吴永玲, 魏信平, 李筱玲, 魏婷, 胡美倩. 牡丹籽粕提取液对连作土壤特性及小麦全蚀病防治研究[J]. 中国农学通报, 2021, 37(26): 133-139. |
[4] | 谢勇飞, 赵钢, 孙娜, 吕银萍, 吴勇, 沈美辰, 吕文犇, 高俊山. 响应面法优化棕色棉纤维原花青素的提取工艺[J]. 中国农学通报, 2021, 37(12): 136-143. |
[5] | 张晓虎, 李倩, 魏夏夏, 刘庚玫, 何勇. 连翘果实多酚提取及其复合涂膜保鲜剂在葡萄保鲜中的应用[J]. 中国农学通报, 2020, 36(4): 135-141. |
[6] | 李瑞雪,王钰婷,夏家凤,骆冬青,汪泰初. 桑黄菌丝体中多糖提取工艺优化及其体外抗氧化活性分析[J]. 中国农学通报, 2019, 35(29): 143-150. |
[7] | 代玉立,潘月敏,樊 淼,甘 林,高智谋. 枯草芽孢杆菌RSS-1 菌株产生抗菌物质条件的优化[J]. 中国农学通报, 2018, 34(3): 51-57. |
[8] | 耿雅妮,董洁,任雪盈,张 军. 不同微波消解方法对黄土中镉、铅ICP-MS测定的影响[J]. 中国农学通报, 2018, 34(26): 99-103. |
[9] | 蔡兴航,孙晓春,孙安敏,谢培,韩玲,黄文静. 党参茎叶总皂苷提取工艺及其抗氧化活性研究[J]. 中国农学通报, 2018, 34(26): 146-151. |
[10] | 张爱丽,何苗,黄衡宇,王元忠,李继祥. 以核桃壳为主要基质的铁皮石斛栽培研究[J]. 中国农学通报, 2018, 34(26): 76-82. |
[11] | 孙美玲,梁月洋,王红朵,张仲鸣. 河南南阳地产绿米稻壳中花青素的提取工艺研究[J]. 中国农学通报, 2018, 34(18): 71-76. |
[12] | 李增富,张君诚,张杭颖,宋育红,罗菊香. 超声波辅助溶剂法提取金线莲总黄酮工艺优化[J]. 中国农学通报, 2017, 33(33): 148-158. |
[13] | 刘晓柱,李银凤,赵晓伟,赵燕. 舞茸菌丝体与胞外多糖液体培养基的优化[J]. 中国农学通报, 2017, 33(22): 36-40. |
[14] | 王 红,张琪林. 大球盖菇多糖碱法提取条件优化研究[J]. 中国农学通报, 2016, 32(26): 71-74. |
[15] | 徐天才,赵 菊,谭敬菊,薛润光. 正交实验法优化玛咖虫莲保健酒的配方和工艺[J]. 中国农学通报, 2016, 32(2): 45-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||