 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (18): 57-64.doi: 10.11924/j.issn.1000-6850.casb2020-0403
所属专题: 资源与环境
        
               		聂功平1,2( ), 陈敏敏2, 杨柳燕2, 蔡友铭2, 许锋1, 张永春2(
), 陈敏敏2, 杨柳燕2, 蔡友铭2, 许锋1, 张永春2( )
)
                  
        
        
        
        
    
收稿日期:2020-08-26
									
				
											修回日期:2020-11-16
									
				
									
				
											出版日期:2021-06-25
									
				
											发布日期:2021-07-13
									
			通讯作者:
					张永春
							作者简介:聂功平,男,1995年出生,湖北襄阳人,硕士研究生,主要从事百合种质抗性研究。通信地址:201403 上海市奉贤区金齐路1000号 上海市农业科学院林果所,Tel:0710-17282303246,E-mail: 基金资助:
        
               		Nie Gongping1,2( ), Chen Minmin2, Yang Liuyan2, Cai Youming2, Xu Feng1, Zhang Yongchun2(
), Chen Minmin2, Yang Liuyan2, Cai Youming2, Xu Feng1, Zhang Yongchun2( )
)
			  
			
			
			
                
        
    
Received:2020-08-26
									
				
											Revised:2020-11-16
									
				
									
				
											Online:2021-06-25
									
				
											Published:2021-07-13
									
			Contact:
					Zhang Yongchun  			     					     	
							摘要:
淹水胁迫是影响植物分布与生长发育的重要因素,植物耐涝性研究是提高作物耐涝性以应对日益严峻的极端气候及规模化生产管理的关键。为了合理开展植物耐涝性研究,深入挖掘不同植物响应淹水胁迫的调控机理,本文归纳了淹水胁迫对植物生长发育的影响,总结了植物响应淹水胁迫的调节机制,并详细分析了淹水胁迫对植物表型性状、生物量、光合作用、活性氧离子积累、糖含量和生物膜的影响,以及乙烯信号分子、活性氧清除机制、渗透调节、形态调节、分子和代谢调控在植物响应淹水胁迫中的调节机制。最后,通过总结,提出了合理开发外源调节物质提高作物耐涝性值得进一步的深入研究。
中图分类号:
聂功平, 陈敏敏, 杨柳燕, 蔡友铭, 许锋, 张永春. 植物响应淹水胁迫的研究进展[J]. 中国农学通报, 2021, 37(18): 57-64.
Nie Gongping, Chen Minmin, Yang Liuyan, Cai Youming, Xu Feng, Zhang Yongchun. Plant Response to Waterlogging Stress: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 57-64.
| [1] | Herzog M, Striker G G, Colmer T D, et al. Mechanisms of waterlogging tolerance in wheat -a review of root and shoot physiology[J]. Plant Cell & Environment, 2016,39(5):1068-1086. | 
| [2] | Arguello M N, Mason R E, Roberts T L, et al. Performance of soft red winter wheat subjected to field soil waterlogging: Grain yield and yield components[J]. Field Crops Research, 2016: 57-64. | 
| [3] | Zhang Y, Chen Y, Lu H, et al. Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging[J]. Field Crops Research, 2016: 83-93. | 
| [4] | 尹冬梅, 管志勇, 陈素梅, 等. 菊花及其近缘种属植物耐涝评价体系建立及耐涝性鉴定[J]. 植物遗传资源学报, 2009,10(3):399-404. | 
| [5] | 宋钊, 张白鸽, 李颖, 等. 辣椒形态学耐涝评价体系的建立与应用[J]. 热带作物学报, 2017,038(10):1815-1822. | 
| [6] | Loreti E, van Veen H, Perata P. Plant responses to flooding stress[J]. Current Opinion in Plant Biology. 2016,33:64-71. doi: S1369-5266(16)30088-7 pmid: 27322538 | 
| [7] | Minami A, Yano K, Gamuyao R, et al. Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding[J]. Plant Physiology. 2018,176(4):3081-3102. doi: 10.1104/pp.17.00858 pmid: 29475897 | 
| [8] | Peng Y, Zhou Z, Zhang Z, et al. Molecular and physiological responses in roots of two full-sib poplars uncover mechanisms that contribute to differences in partial submergence tolerance[J]. Scientific Reports, 2018,8(1):12829. doi: 10.1038/s41598-018-30821-y URL | 
| [9] | Arbona V, Hossain Z, María F López-Climent, et al. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus[J]. Physiologia Plantarum, 2008,132(4):452-466. doi: 10.1111/j.1399-3054.2007.01029.x URL | 
| [10] | Yetisir H, Aliskan M E, Soylu S, et al. Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding[J]. Environmental & Experimental Botany, 2006,58(1-3):1-8. | 
| [11] | Zeng N, Yang Z, Zhang Z, et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress[J]. International Journal of Molecular Sciences, 2019,20(6):1359. doi: 10.3390/ijms20061359 URL | 
| [12] | Wei W, Li D, Wang L, et al. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.)[J]. Plant Science, 2013,208(Complete):102-111. doi: 10.1016/j.plantsci.2013.03.014 URL | 
| [13] | Anee T I, Nahar K, Rahman A, et al. Oxidative Damage and Antioxidant Defense in Sesamum indicum after Different Waterlogging Durations[J]. Plants (Basel), 2019,8(7):196. | 
| [14] | Castonguay Y, Nadeau P, Simard R R. Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa[J]. Plant Cell and Environment, 1993,16:695-702. doi: 10.1111/pce.1993.16.issue-6 URL | 
| [15] | Barickman T C, Simpson C R, Sams C E. Waterlogging Causes Early Modification in the Physiological Performance, Carotenoids, Chlorophylls, Proline, and Soluble Sugars of Cucumber Plants[J]. Plants (Basel), 2019,8(6) pii:E160 | 
| [16] | Huang B, Nesmith D S, Bridges D C, et al. Responses of squash to salinity, waterlogging, and subsequent drainage: II. Root and shoot growth[J]. Journal of Plant Nutrition 1995,18(1):141-152. doi: 10.1080/01904169509364891 URL | 
| [17] | Malik A I, Colmer T D, Lambers H, et al. Short-term waterlogging has long-term effects on the growth and physiology of wheat[J]. New Phytololgy, 2002,153:225-236. | 
| [18] | Ezin Vincent, Pena Robert De La, Ahanchede Adam, et al. Flooding tolerance of tomato genotypes during vegetative and reproductive stages[J]. Plant Physiololgy, 2010,22:131-142. | 
| [19] | Perl-Treves R, Perl A. Oxidative stress: an introduction.In: Inze´ D, Montagu MV (eds) Oxidative Stress in Plants[M]. London: Taylor & Francis, 2002: 1-32. | 
| [20] | Blokhina O, Virolainen E, Fagerstedt K V, et al. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Annals of Botany, 2003,91:179-194. doi: 10.1093/aob/mcf118 URL | 
| [21] | Alam I, Lee D G, Kim K H, et al. Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage[J]. Journal of Bioences, 2010,35(1):49-62. | 
| [22] | Sairam R K, Kumutha D, Chinnusamy V, et al. Waterlogging- induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata)[J]. Journal of Plant Physiololgy, 2009,166:602-616. | 
| [23] | Zeng Y, Avigne W T, Koch K E, et al. Rapid repression of maize invertase by low oxygen: Invertase/sucrose synthase balance, sugar signaling potential and seedling survival[J]. Plant Physiololgy, 1999,121:599-608. | 
| [24] | Albrecht G, Mustroph A, Fox T C, et al. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots[J]. Plant Physiololgy, 2004,120:93-105. | 
| [25] | Mustroph A, Albrecht G. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J]. Physiologia Plantarum, 2003,117:508-520. doi: 10.1034/j.1399-3054.2003.00051.x URL | 
| [26] | Huang B, Johnson J W. Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia[J]. Annals of Botany, 1995,75:427-432. doi: 10.1006/anbo.1995.1041 URL | 
| [27] | 杨曼, 张佑麟, 徐振东, 等. 水分胁迫对黑壳楠和香樟幼苗生理特性的影响[J]. 南方农业学报, 2015,46(8):1449-1454. | 
| [28] | 庞宏东, 胡兴宜, 胡文杰, 等. 淹水胁迫对枫杨等3个树种生理生化特性的影响[J]. 中国林业科技大学学报, 2018,38(10):15-20. | 
| [29] | Voesenek L, Bailey-Serres J. Flooding tolerance: O2 sensing and survival strategies[J]. Current Opinion in Plant Biology, 2013,16:647-653. doi: 10.1016/j.pbi.2013.06.008 pmid: 23830867 | 
| [30] | Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress[J]. Annals of Botany, 2005,96:501-505. doi: 10.1093/aob/mci205 URL | 
| [31] | Justin S H F W, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding[J]. New Phytololgy, 1987,106:465-495. | 
| [32] | Evans D E. Aerenchyma formation[J]. New Phytololgy, 2003,161:35-49. | 
| [33] | Jackson M B. Ethylene and responses of plants to soil waterlogging and submergence[J]. Annual Review Plant Physiololgy, 1985,36:145-174. | 
| [34] | Stünzi J T, Kende H. Gas composition in the internal air spaces of deep water rice in relation to growth induced by submergence[J]. Plant and Cell Physiololgy, 1989,30:49-56. | 
| [35] | Sairam R K, Kumutha D, Ezhilmathi K, et al. physiology and biochemistry of waterlogging tolerance in plants[J]. Biologia Plantarum, 2008,52(3):401-412. doi: 10.1007/s10535-008-0084-6 URL | 
| [36] | Visser E J W, Bogemann G, Blom C W P M, et al. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots[J]. Journal of experimental Botany, 1996,47:403-410. doi: 10.1093/jxb/47.3.403 URL | 
| [37] | Davies D D. Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The biochemistry of plants[M]. New York: Academic Press, 1980: 581-611. | 
| [38] | Jackson M B, Drew M C. Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth[M]. New York: Academic Press, 1984: 47-128. | 
| [39] | Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers[J]. Biotechnology Advances, 2009,27:84-93. doi: 10.1016/j.biotechadv.2008.09.003 pmid: 18950697 | 
| [40] | Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004,9:490-498. doi: 10.1016/j.tplants.2004.08.009 URL | 
| [41] | Narayanan S, Ruma D, Gitika B, et al. Antioxidant activities of seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells[J]. Molecular and Cellular Biochemistry, 2005,278:9-14. doi: 10.1007/s11010-005-7636-2 URL | 
| [42] | Foyer C H, Looez-Delgado H, Dat J F, et al. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling[J]. Physiologia Plantarum, 1997,100:241-254. doi: 10.1111/ppl.1997.100.issue-2 URL | 
| [43] | Garnczarska M. Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots[J]. Plant Physiology and Biochemistry, 2005,43:583-590. pmid: 15975806 | 
| [44] | Bradford K J N D, Yang S F. Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants[J]. Plant Physiololgy, 1980,65:322-326. | 
| [45] | Cohen E, Kende H. In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deep water rice: Enhancement by submergence and low oxygen levels[J]. Plant Physiololgy, 1987,84:282-286. | 
| [46] | Geisler-Lee J, Caldwell C, Gallie D R, et al. Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia[J]. Journal of Experimental Botany, 2010,61:857-871. doi: 10.1093/jxb/erp362 pmid: 20008461 | 
| [47] | Vriezen W H, Hulzink R, Mariani C, et al. 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynjournal in Rumex palustris during submergence[J]. Plant Physiololgy, 1999,121:189-196. | 
| [48] | Emuejevoke V, Onyekachukwu A, El-Esawi M A, , et al. Comparative physiological, biochemical, and genetic responses to prolonged waterlogging stress in okra and maize given exogenous ethylene priming[J]. Frontiers in Physiology, 2017,8:632. doi: 10.3389/fphys.2017.00632 pmid: 28993735 | 
| [49] | Lin K H R, Tsou C C, Hwang S Y, et al. Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato[J]. Journal of Plant Physiololgy, 2006,163:750-760. | 
| [50] | Ushimaro T, Shibasaka M, Tsuji H. Development of O2- detoxification system during adaptation to air of submerged rice seedlings[J]. Plant and Cell Physiology, 1992,33:1065-1071. | 
| [51] | Hurng W P, Kao C H. Effect of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescencing tobacco leaves[J]. Plant Growth Regulation, 1994,14:37-44. doi: 10.1007/BF00024139 URL | 
| [52] | Hurng W P, Kao C H. Lipid peroxidation and antioxidative enzymes in senesencing tobacco leaves following flooding[J]. Plant Science, 1994,96:41-44. doi: 10.1016/0168-9452(94)90220-8 URL | 
| [53] | Hwang S Y, Lo H F, hao C K, et al. Changes in antioxidative enzyme activities in two leafy vegetable sweet potato cultivars subjected to waterlogged conditions[J]. Journal of the China Society for Horticultural Science, 2000,46:287-296. | 
| [54] | Ahmed S, Nawata E, Hosokawa M, et al. Alterations in photosynjournal and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2000,163:117-123. doi: 10.1016/S0168-9452(02)00080-8 URL | 
| [55] | Grassini P, Indaco G V, Pereira M L, et al. Responses to shortterm waterlogging during grain filling in sunflower[J]. Field Crops Research, 2007,101:352-363 doi: 10.1016/j.fcr.2006.12.009 URL | 
| [56] | Li C, Jiang D, Wollenweber B, et al. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anjournal in wheat[J]. Plant Science, 2011,180:672-678. doi: 10.1016/j.plantsci.2011.01.009 URL | 
| [57] | Yordanova R Y, Christov K N, Popova L P. Antioxidative enzymes in barley plants subjected to soil flooding[J]. Environmental and Experimental Botany, 2004,51:93-101. doi: 10.1016/S0098-8472(03)00063-7 URL | 
| [58] | Yordanova R Y, Popova L P. Photosynthetic Response of Barley Plants to Soil Flooding[J]. Photosynthetica (Prague), 2001,39(4):515-520. | 
| [59] | 梁芳, 黄寿镕, 於艳萍, 等. 红花玉蕊对淡水全淹胁迫的生长及生理响应[J]. 西南林业大学学报, 201939(3):18-25. | 
| [60] | Drew M C, He C J, Morgan P W. Programmed cell death and aerenchyma formation in roots[J]. Trends in Plant Science, 2000,5(3):123-127. doi: 10.1016/S1360-1385(00)01570-3 URL | 
| [61] | Jiang Z, Song X F, Zhou Z Q, et al. Aerenchyma formation: programmed cell death in adventitious roots of winter wheat (Triticum aestivum) under waterlogging[J]. Functional Plant Biology, 2010,37(8):748-755. doi: 10.1071/FP09252 URL | 
| [62] | Zhao N, Li C, Yan Y, et al. Comparative Transcriptome Analysis of Waterlogging-Sensitive and Chrysanthemum morifolium Cultivars under Waterlogging Stress and Reoxygenation Waterlogging-Tolerant Chrysanthemum morifolium Cultivars under Waterlogging Stress and Reoxygenation Conditions[J]. Internaltional Journal of Molecular Science, 2018,19. | 
| [63] | Ayano M, Kani T, Kojima M, et al. Gibberellin biosynjournal and signal transduction is essential for internode elongation in deepwater rice[J]. Plant Cell and Environment, 2015,37:2313-2324. doi: 10.1111/pce.2014.37.issue-10 URL | 
| [64] | Schmitz A J, Folsom J J, Jikamaru Y, et al. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway[J]. New Phytologist, 2013,198:1060-1070. doi: 10.1111/nph.2013.198.issue-4 URL | 
| [65] | Kim Y H, Hwang S J, Waqas M, et al. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance[J]. Frontiers in Plant Science, 2015,6:714. | 
| [66] | Zeng B, Zhang Y, Zhang A, et al. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress[J]. Phytochemistry, 2020,175:112378. doi: 10.1016/j.phytochem.2020.112378 URL | 
| [67] | Chugh V, Gupta A K, Grewal M S, et al. Response of antioxidative and ethanolic fermentation enzymes in maize seedlings of tolerant and sensitive genotypes under short-term waterlogging[J]. Indian Journal Experimental Biology, 2012,50:577-582. | 
| [68] | Fukao T, Bailey-Serres J. Plant responses to hypoxia - is survival a balancing act[J]. Trends in Plant Science, 2004,9:449-456. doi: 10.1016/j.tplants.2004.07.005 URL | 
| [69] | Kumutha D, Sairam R K, Ezhilmathi K, et al. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): upregulation of sucrose synthase and alcohol dehydrogenase[J]. Plant Science, 2008,175:706-716. doi: 10.1016/j.plantsci.2008.07.013 URL | 
| [70] | Ismail A M, Ella E S, Vergara G V, et al. Mechanisms associated with tolerance of flooding during germination and early seedling growth in rice (Oryza sativa)[J]. Annals of Botany, 2009,103:197-209. doi: 10.1093/aob/mcn211 URL | 
| [71] | Ismond K P, Dolferus R, Pauw M, et al. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway[J]. Plant Physiology, 2003,132:1292-1302. doi: 10.1104/pp.103.022244 URL | 
| [72] | Ren B, Dong S, Zhao B, et al. Responses of Nitrogen Metabolism, Uptake and Translocation of Maize to Waterlogging at Different Growth Stages[J]. Frontiers in Plant Science, 2017,8:1216. doi: 10.3389/fpls.2017.01216 URL | 
| [73] | Borrego-Benjumea A, Carter A, Tucker J R, et al. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley (Hordeum vulgare L.)[J]. Plants (Basel), 2020,9(2):240. | 
| [74] | Fu S, Chang P L, Friesen M L, et al. Identifying similar transcripts in a related organism from de Bruijn graphs of RNA-Seq data, with applications to the study of salt and waterlogging tolerance in Melilotus[J]. BMC Genomics, 2019,20(Suppl 5):425. doi: 10.1186/s12864-019-5702-5 URL | 
| [75] | López-Delgado H A, Martínez-Gutiérrez R, Mora-Herrera M E, et al. Induction of freezing tolerance by the application of hydrogen peroxide and salicylic acid as tuber-dip or canopy spraying in Solanum tuberosum L.[J]. Potato Research, 2018,61:195-206. doi: 10.1007/s11540-018-9368-1 URL | 
| [76] | İşeri Ö D, Körpe D A, Sahin F I, et al. Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress[J]. Acta Physiologiae Plantarum, 2013,35:1905-1913. doi: 10.1007/s11738-013-1228-7 URL | 
| [77] | Khan T A, Yusuf M, Fariduddin Q. Seed treatment with H2O2 modifies net photosynthetic rate and antioxidant system in mung bean (Vigna radiata L. Wilczek) plants[J]. Israel Journal of Plant Science, 2015,62:167-175. doi: 10.1080/07929978.2015.1060806 URL | 
| [78] | Bhattacharjee S. An inductive pulse of hydrogen peroxide pretreatment restores redox-homeostasis and oxidative membrane damage under extremes of temperature in two rice cultivars[J]. Plant Growth Regulation, 2012,68:395-410. doi: 10.1007/s10725-012-9728-9 URL | 
| [79] | Guzel S, Terzi R. Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress[J]. Botanical Studies, 2013,54(1):26. doi: 10.1186/1999-3110-54-26 URL | 
| [80] | Andrade C A, de Souza K R D, Santos M D O, et al. Hydrogen peroxide promotes the tolerance of soybeans to waterlogging[J]. Scientia Horticulturae, 2018,232:40-45. doi: 10.1016/j.scienta.2017.12.048 URL | 
| [1] | 卢倩倩, 冯琳骄, 王爽, 古力扎提·包尔汗, 褚韧, 周龙. 复合盐碱胁迫对鲜食葡萄生理生化指标的影响[J]. 中国农学通报, 2023, 39(1): 62-70. | 
| [2] | 董雨青, 魏雪苹, 强亭燕, 张本刚, 齐耀东, 刘海涛. 简化基因组测序技术在植物遗传分析中的应用[J]. 中国农学通报, 2022, 38(8): 25-32. | 
| [3] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. | 
| [4] | 刘鹏, 吴巧花, 舒惠理, 周莉荫, 王小东. 油茶对胁迫因子的响应机制研究进展[J]. 中国农学通报, 2022, 38(7): 24-28. | 
| [5] | 高萌, 张冬野, 冯国军, 杨晓旭, 刘畅, 闫志山, 刘大军. 外源硒对60Co-γ辐射下菜豆幼苗生长和生理的影响[J]. 中国农学通报, 2022, 38(7): 35-40. | 
| [6] | 陈道, 王新, 江山, 张洁, 吴祖建, 丁新伦. 福建地区草莓斑驳病毒全基因组测序和分子变异分析[J]. 中国农学通报, 2022, 38(6): 94-101. | 
| [7] | 谷书杰, 钱禛锋, 娄永明, 沈庆庆, 普凤雅, 曾丹, 马豪, 何丽莲, 李富生. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47. | 
| [8] | 郑培峰, 姜小蕾, 翟彦霖, 郭绍霞, 李伟. PGPR对莠去津污染土壤中结缕草生长及生理的影响[J]. 中国农学通报, 2022, 38(5): 124-131. | 
| [9] | 商娜, 任爱芝, 刘冰, 赵培宝. 白三叶草一种叶斑病病原菌的分离鉴定[J]. 中国农学通报, 2022, 38(4): 81-85. | 
| [10] | 罗志明, 覃伟, 尹炯, 李银煳, 张荣跃, 李俊. 甘蔗种质对甘蔗蓟马的耐害性研究[J]. 中国农学通报, 2022, 38(34): 107-112. | 
| [11] | 韩佳希, 范中菡, 董义霞, 吕昕芮, 李红春, 陈庆华, 李洪浩, 林立金, 胡容平. 脱落酸对葡萄幼苗镉积累的影响[J]. 中国农学通报, 2022, 38(34): 46-51. | 
| [12] | 李荣田, 时柳, 黄丽莹, 刘长华. 利用分子选择培育水稻‘吉粳88’(hd2/hd4)导入系[J]. 中国农学通报, 2022, 38(33): 1-9. | 
| [13] | 钱振家, 徐金铖, 余友斌, 张成林, 刘晃. 水流对鱼类游泳行为和生理代谢的影响的研究进展[J]. 中国农学通报, 2022, 38(32): 133-138. | 
| [14] | 王月敏, 柯玉琴, 谢榕榕, 李春英, 李文卿. 喷施微肥对定位施肥烟株成熟期生理代谢的影响[J]. 中国农学通报, 2022, 38(31): 24-30. | 
| [15] | 黄发新, 宋晓波, 陈凌娜, 齐季, 徐永杰. 核桃物候期与叶、果表型可塑性研究[J]. 中国农学通报, 2022, 38(31): 49-54. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||