[1] |
Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015,1(6):15051.
doi: 10.1038/nplants.2015.51
URL
|
[2] |
Oburger E, Jones D L. Sampling root exudates-mission impossible?[J]. Rhizosphere, 2018,6:116-133.
doi: 10.1016/j.rhisph.2018.06.004
URL
|
[3] |
Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006,57:233-266.
doi: 10.1146/annurev.arplant.57.032905.105159
URL
|
[4] |
Philippot L, Hallin S, Börjesson G, et al. Biochemical cycling in the rhizosphere having an impact on global change[J]. Plant Soil, 2009,321:61-81.
doi: 10.1007/s11104-008-9796-9
URL
|
[5] |
张福锁. 根分泌物及其在植物营养中的作用[J]. 北京农业大学学报, 1992,18(4):353-357.
|
[6] |
Curl E A, Truelove B. The Rhizosphere[M]. Springer Berlin Heidelberg, 1986.
|
[7] |
Heim A, Brunner I, Frey B, et al. Root exudation, organic acids, and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics[J]. Journal of plant nutrition and soil science, 2001,164:519-526.
|
[8] |
O'Sullivan C A, Whisson K, Treble K, et al. Biological nitrification inhibition by weeds, wild radish, brome grass, wild oats and annual ryegrass decrease nitrification rates in their rhizospheres[J]. Crop & Pasture Science, 2017,68:798-804.
|
[9] |
王秋红, 郭亚宁, 胡晓航, 等. 不同有机氮效率的甜菜基因型筛选及差异分析[J]. 植物研究, 2017,37(4):563-571.
|
[10] |
彭春雪, 耿贵, 於丽华, 等. 不同浓度钠对甜菜生长及生理特性的影响[J]. 植物营养与肥料学报, 2014,(2):59-465.
|
[11] |
孙宝利, 黄金丽, 贺小蔚, 等. 高效液相色谱法测定土壤中有机酸[J]. 分析试验室, 2010,29(5):51-54.
|
[12] |
侯松嵋, 孙敬, 何红波, 等. AQC柱前衍生反相高效液相色谱法测定土壤中氨基酸[J]. 分析化学, 2006,34(10):1395-1400.
|
[13] |
蔡心尧, 朱叶. 高效液相色谱测定糖类[J]. 食品与发酵工业, 1985(5):13-22.
|
[14] |
Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015,1(6):15051.
doi: 10.1038/nplants.2015.51
URL
|
[15] |
Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant Cell & Environment, 2009,32:666-681.
|
[16] |
Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant Soil, 2002,245:35-47.
doi: 10.1023/A:1020809400075
URL
|
[17] |
Moe L A. Amino acids in the rhizosphere: from plants to microbes[J]. American Journal of Botany, 2013,100:1692-1705.
doi: 10.3732/ajb.1300033
URL
|
[18] |
Farrar J, Hawes M, Jones D L, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003,84:827-837.
doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
URL
|
[19] |
Yu Z, Zhang Q, Kraus T, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002,61:173-198.
doi: 10.1023/A:1020221528515
URL
|
[20] |
Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biology and Biochemistry, 1998,30:369-378.
doi: 10.1016/S0038-0717(97)00124-7
URL
|
[21] |
Kuzyakov Y. Review: factors affecting rhizosphere priming effects[J]. Journal of Soil Science and Plant Nutrition, 2002,165:382-396.
|
[22] |
Read D J, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?[J]. New Phytologist, 2003,157:475-492.
doi: 10.1046/j.1469-8137.2003.00704.x
URL
|
[23] |
Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant & Soil, 1994,163(1):1-12.
|
[24] |
Larrainzar E, Wienkoop S, Scherling C, et al. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery[J]. Molecular Plant Microbe Interact, 2009,22:1565-1576.
doi: 10.1094/MPMI-22-12-1565
URL
|
[25] |
Okumoto S, Funck D, Trovato M, et al. Editorial: amino acids of the glutamate family: functions beyond primary metabolism[J]. Frontiers in Plant Science, 2016,7:318.
doi: 10.3389/fpls.2016.00318
pmid: 27047503
|
[26] |
Hoffland E. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape[J]. Plant and Soil, 1992,140:279-289.
doi: 10.1007/BF00010605
URL
|
[27] |
Dinkelaker B, Rmheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant Cell & Environment, 2010,12(3):285-292.
|
[28] |
Jones D L, Darrah P R. Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere[J]. Plant & Soil, 1996,178(1):153-160.
|