[1] |
国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[N]. 人民日报,2021-03-01(010).
|
[2] |
刘志铭, 张晓龙, 兰进好, 等. 1979-2020年中国玉米品种审定情况回顾与展望[J]. 玉米科学, 2021, 29(2):1-7,15.
|
[3] |
徐丽, 赵久然, 卢柏山, 等. 中国鲜食玉米种业现状及发展趋势[J]. 中国种业, 2020(10):14-18.
|
[4] |
周伟, 崔福柱, 段宏凯, 等. 播期对糯玉米籽粒产量及品质的影响[J]. 作物杂志, 2020(2):156-161.
|
[5] |
王行川, 费继飞, 刘东胜, 等. 基于玉米新品种联创808选育的商业育种问题探讨[J]. 玉米学, 2020, 28(5):14-19.
|
[6] |
陈泽辉, 吴迅, 祝云芳, 等. 杂种优势的数量遗传学理论及其在玉米育种中的应用[J]. 玉米科学, 2020, 28(5):1-7.
|
[7] |
宋伟彬, 赵海铭, 赖锦盛. 2019年中国玉米生物学研究进展[J]. 玉米科学, 2020, 28(3):15-30.
|
[8] |
贺囡囡, 冯云敢, 蒙云飞, 等. 利用SNP标记及配合力划分超甜玉米自交系的杂种优势群[J]. 植物遗传资源学报, 2021, 22(1):165-173.
|
[9] |
袁文娅, 赵晓雷, 周旭梅, 等. waxy基因功能标记开发及在糯玉米育种中的应用[J]. 作物杂志, 2020(4):99-106.
|
[10] |
尹祥佳, 李晶, 王雅琳, 等. SNP标记在玉米分子育种中的应用[J]. 中国种业, 2021(4):23-26.
|
[11] |
BERKE T G, ROCHEFORD T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize[J]. Crop science, 1995,35.
|
[12] |
LI Y L, WANG Y Z, WEI M G, et al. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.)[J]. Journal of genetics, 2009, 88(1):61-67.
doi: 10.1007/s12041-009-0008-z
URL
|
[13] |
孙海艳, 蔡一林, 王久光, 等. 玉米主要营养品质性状的QTL定位[J]. 农业生物技术学报, 2011, 19(4):616-623.
|
[14] |
邓敏. 玉米籽粒氨基酸全基因组关联分析与连锁分析及玉米和水稻代谢组的比较分析[D]. 武汉: 华中农业大学, 2017.
|
[15] |
张中伟. 普通×爆裂玉米RILs构建及主要性状QTL分析[D]. 郑州: 河南农业大学, 2009.
|
[16] |
裴玉贺, 李玉冰, 郭新梅, 等. 玉米主要营养品质性状的QTL定位[J]. 玉米科学, 2014, 22(6):21-26.
|
[17] |
赵丹. 玉米籽粒营养品质性状的QTL分析[D]. 雅安: 四川农业大学, 2016.
|
[18] |
GOLDMAN I L, ROCHEFORD T R, DUDLEY J W. Quantitative trait loci influencing protein and starch concentration in the illinois long term selection maize strains[J]. Theoretical and applied genetics, 1993, 87(1-2):217-224.
doi: 10.1007/BF00223767
URL
|
[19] |
MANGOLIN C A, DE SOUZA C L, GARCIA A A F, et al. Mapping QTLs for kernel oil content in a tropical maize population[J]. Euphytica, 2004, 137(2):251-259.
doi: 10.1023/B:EUPH.0000041588.95689.47
URL
|
[20] |
YANG X H, GUO Y Q, YAN J B, et al. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize[J]. Theoretical and applied genetics, 2010, 120(3):665-678.
doi: 10.1007/s00122-009-1184-1
URL
|
[21] |
兰天茹, 崔婷婷, 何坤辉, 等. 不同氮水平下玉米子粒品质性状的QTL定位[J]. 玉米科学, 2017, 25(2):6-11.
|
[22] |
石海春, 余学杰, 袁继超, 等. 玉米营养品质性状的QTL定位[J]. 四川大学学报:自然科学版, 2009, 46(5):1454-1460.
|
[23] |
张珍珍. 玉米籽粒品质相关性状的QTL分析[D]. 郑州: 河南农业大学, 2014.
|
[24] |
李穆, 孟令聪, 郑淑波, 等. “十二五”以来中国玉米分子育种研究进展[J]. 玉米科学, 2019, 27(6):1-6.
|
[25] |
刘强, 赵丽, 郭虹霞, 等. 玉米野生近缘种大刍草幼苗叶片的转录组SSR分析[J]. 玉米科学, 2020, 28(2):69-75.
|
[26] |
宁丽华, 陈亭亭, 刘怀华, 等. 高直链淀粉玉米amylose-extender基因功能标记的开发及应用[J]. 分子植物育种, 2011, 9(2):185-189.
|
[27] |
ZHENG P Z, BABAR M D, PARTHASARATHY S, et al. A truncated FatB resulting from a single nucleotide insertion is responsible for reducing saturated fatty acids in maize seed oil.[J]. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 2014, 127(7):1537-1547.
doi: 10.1007/s00122-014-2317-8
URL
|
[28] |
王伟, 王明春, 张开武, 等. 玉米o2,o16和wx基因不同聚合类型近等基因系的选育[J]. 种子, 2019, 38(2):1-6.
|
[29] |
MERTZ E T, BATES L S, NELSON O E. Mutant fene that changes protein composition and increases lysine content of maize endoperm[J]. Science (New York, N.Y.), 1964, 145(3629):279-280.
doi: 10.1126/science.145.3629.279
URL
|
[30] |
RIBAUT J M, HOISINGTON D. Marker-assisted selection:new tools and strategies[J]. Trends in plant science, 1998, 3(6):236-239
doi: 10.1016/S1360-1385(98)01240-0
URL
|
[31] |
宋敏, 田清震, 李新海, 等. 分子标记在优质蛋白玉米(QPM)育种中的应用[J]. 中国农业科学, 2005(9):1748-1754.
|
[32] |
张文龙. 分子标记辅助选择聚合玉米两个高赖氨酸基因o2、o16及糯质基因wx[D]. 重庆: 西南大学, 2010.
|
[33] |
鲁守平, 张华, 孟昭东, 等. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, 190(3):24-28.
|
[34] |
王长进, 徐运林, 程昕昕, 等. 甜玉米种子营养品质主要性状全基因组关联分析[J]. 浙江农业学报, 2020, 32(3):383-389.
doi: 10.3969/j.issn.1004-1524.2020.03.01
|
[35] |
赵陆滟, 曹绍玉, 龙云树, 等. 全长转录组测序在植物中的应用研究进展[J]. 植物遗传资源报, 2019, 20(6):1390-1398.
|
[36] |
何骋. 转录组测序数据分析在玉米籽粒功能基因挖掘中的应用[D]. 北京: 中国农业大学, 2017.
|
[37] |
党仁芳. 转录因子ZmMADS11对玉米淀粉合成的影响[D]. 雅安: 四川农业大学, 2018.
|
[38] |
杨露. 玉米籽粒品质性状的全基因组关联分析[D]. 郑州: 河南农业大学, 2020.
|
[39] |
董青松. 春玉米自交系籽粒品质相关性状的全基因组关联分析[D]. 长春: 吉林农业大学, 2017.
|
[40] |
李长生. 优质蛋白玉米的全基因组关联分析及比较基因组学分析[D]. 沈阳: 沈阳农业大学, 2018.
|
[41] |
岳静. 高赖氨酸蛋白新基因的克隆及其在玉米遗传改良中的应用[D]. 北京: 中国农业大学, 2014.
|
[42] |
HUA Y, LIU X Y, XIN M M, et al. Genome-wide mapping of targets of maize histone deacetylase HDA101 reveals its function and regulatory mechanism during seed development[J]. The plant cell, 2016, 28(3):629.
doi: 10.1105/tpc.15.00691
URL
|
[43] |
QI X, LI S X, ZHU Y X, et al. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm[J]. Plant molecular biology, 2017, 93(1-2):7-20.
doi: 10.1007/s11103-016-0543-y
URL
|
[44] |
侯军岐, 黄珊珊. 全球转基因作物发展趋势与中国产业化风险管理[J]. 西北农林科技大学学报:社会科版, 2020, 20(6):104-111.
|
[45] |
杨树果. 全球转基因作物发展演变与趋势[J]. 中国农业大学学报, 2020, 25(9):13-26.
|
[46] |
柴晓杰, 王丕武, 关淑艳, 等. 应用RNA干扰技术降低玉米支链淀粉含量[J]. 植物生理与分子生物学学报, 2005(6):625-630.
|
[47] |
JIANG L, YU X M, QI X, et al. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose[J]. Transgenic research, 2013, 22(6):1133-1142.
doi: 10.1007/s11248-013-9717-4
URL
|
[48] |
孙学辉, 敖光明, 于静娟, 等. 高赖氨酸基因导入玉米自交系的研究[J]. 农业生物技术学报, 2001(2): 98,156-158.
|
[49] |
WU X R, KENZIOR A, WILLMOT D, et al. Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine[J]. The plant journal, 2007, 50(4):627-636.
doi: 10.1111/j.1365-313X.2007.03076.x
URL
|
[50] |
ALURU M, XU Y, GUO R, et al. Generation of transgenic maize with enhanced provitamin A content[J]. Journal of experimental botany, 2008, 59(13):3551-3562.
doi: 10.1093/jxb/ern212
URL
|
[51] |
ZHU C F, NAQVI S, BREITENBACH J, et al. Combinatorial genetic transformation generates a Library of metabolic phenotypes for the carotenoid pathway in maize[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(47):18232-18237.
|