中国农学通报 ›› 2022, Vol. 38 ›› Issue (29): 52-60.doi: 10.11924/j.issn.1000-6850.casb2022-0224
夏涛(), 李梦飞, 张雯, 陈雪英, 史银连, 王红莹, 李刚, 祝伟(
)
收稿日期:
2022-03-30
修回日期:
2022-06-15
出版日期:
2022-10-15
发布日期:
2022-10-14
通讯作者:
祝伟
作者简介:
夏涛,女,2002年出生,河南潢川人,本科在读,研究方向:分子遗传学和微生物学研究。通信地址:430074 湖北省武汉市中南民族大学,Tel:027-67842689,E-mail: 基金资助:
XIA Tao(), LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei(
)
Received:
2022-03-30
Revised:
2022-06-15
Online:
2022-10-15
Published:
2022-10-14
Contact:
ZHU Wei
摘要:
菌株ZX67是魔芋软腐病病原菌胡萝卜果胶杆菌胡萝卜亚种(Pectobacterium carotovorum subsp. carotovorum),为进一步了解该病原菌的特性,便于更好地研究防治软腐病的方法,对该菌株进行了全基因组测序和分析。该菌株基因组总长度为4,909,724 bp,GC含量为51.27%,包含4,977个编码基因,其序列长度占总基因组的85.25%,预测的非编码RNA主要包括74个tRNA、22个rRNA及100个sRNA,有10个基因岛,6个转座子,预测存在2个前噬菌体,每个前噬菌体的平均长度为26,258 bp,有5个CRISPR序列,每个序列的平均长度为621 bp,并分析了与降解寄主细胞壁相关的裂解酶、与侵染植物相关的5种蛋白分泌系统。以上结果,为进一步了解软腐病病原菌的特性提供了机会,也为研究新的防治方法提供了新的出发点和思路。
中图分类号:
夏涛, 李梦飞, 张雯, 陈雪英, 史银连, 王红莹, 李刚, 祝伟. 魔芋软腐病病原菌果胶杆菌ZX67菌株全基因组测序及分析[J]. 中国农学通报, 2022, 38(29): 52-60.
XIA Tao, LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei. Complete Genome Sequence of Pectobacterium carotovorum Strain ZX67: An Plant Pathogen of Amorphophallus konjac Soft Rot Disease[J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 52-60.
Genome features | Stat | In Genome/% |
---|---|---|
Genome size | 4,909,724 bp | 100.00 |
Squence GC | 2,517,215 bp | 51.27 |
coding genes | 4,977×1,041 bp | 85.25 |
interspersed nuclear elements(bp) | 261×88 bp | 0.47 |
Tandem Repeat(bp) | 103×235 bp | 0.49 |
ncRNA | 45,076 bp | 0.92 |
Genomics Islands | 10×36,027 bp | 7.3 |
Transposon | 6×363 bp | 0.04 |
Prophage | 2×26,258 bp | 1.07 |
CRISPR | 5×621 bp | 0.06 |
Genome features | Stat | In Genome/% |
---|---|---|
Genome size | 4,909,724 bp | 100.00 |
Squence GC | 2,517,215 bp | 51.27 |
coding genes | 4,977×1,041 bp | 85.25 |
interspersed nuclear elements(bp) | 261×88 bp | 0.47 |
Tandem Repeat(bp) | 103×235 bp | 0.49 |
ncRNA | 45,076 bp | 0.92 |
Genomics Islands | 10×36,027 bp | 7.3 |
Transposon | 6×363 bp | 0.04 |
Prophage | 2×26,258 bp | 1.07 |
CRISPR | 5×621 bp | 0.06 |
CRISPR_id | Start | End | CRISPR Length | DR_consensus | DR_length | Number of spacers |
---|---|---|---|---|---|---|
Crispr_1 | 859546 | 860418 | 872 | TTTCTAAGCTGCCTATGCGGCAGTGAAC | 28 | 14 |
Crispr_2 | 868987 | 870516 | 1529 | GTTCACTGCCGGATAGGCAGCTTAGAAA | 28 | 25 |
Crispr_3 | 878333 | 878841 | 508 | TTTTCTAAGCTGCCTATCCGGCAGTGAAC | 29 | 8 |
Possible Crispr_4 | 2896052 | 2896150 | 98 | CGGGCCGTTGCTACGCAACGTTGAA | 25 | 1 |
Possible Crispr_5 | 3472205 | 3472305 | 100 | GACGGACAAGGATGTCCGCCATAAAAAAA | 29 | 1 |
CRISPR_id | Start | End | CRISPR Length | DR_consensus | DR_length | Number of spacers |
---|---|---|---|---|---|---|
Crispr_1 | 859546 | 860418 | 872 | TTTCTAAGCTGCCTATGCGGCAGTGAAC | 28 | 14 |
Crispr_2 | 868987 | 870516 | 1529 | GTTCACTGCCGGATAGGCAGCTTAGAAA | 28 | 25 |
Crispr_3 | 878333 | 878841 | 508 | TTTTCTAAGCTGCCTATCCGGCAGTGAAC | 29 | 8 |
Possible Crispr_4 | 2896052 | 2896150 | 98 | CGGGCCGTTGCTACGCAACGTTGAA | 25 | 1 |
Possible Crispr_5 | 3472205 | 3472305 | 100 | GACGGACAAGGATGTCCGCCATAAAAAAA | 29 | 1 |
Strain | Country | Collection date | host | Assembly size | CDS | GC/% | CRISPR Arrays | GenBank |
---|---|---|---|---|---|---|---|---|
ZX67 | China | 2017 | Konjak | 4,909,724 | 4,977 | 51.27 | 5 | CP034211 |
P. wasabiae CFBP 3304 | Japan | 1987 | Eutrema wasabi | 5,043,228 | 4,368 | 50.55 | 3 | CP015750 |
P. brasiliense SX309 | China | 2015 | Cucumber | 4,966,299 | 4,252 | 52.18 | 3 | CP020350 |
P. versatile 14A | Belarus | 1978 | Solanum tuberosum | 4,997,114 | 4,335 | 51.77 | 3 | CP034276 |
P. basiliense BZA12 | China | 2015 | Cucumber | 4,924,809 | 4,251 | 51.98 | 3 | CP024780 |
P. parmentieri IFB5604 | Poland | 2014 | Solanum tuberosum | 4,877,201 | 4,249 | 50.56 | 4 | CP026983 |
P. parmentieri IFB5432 | Poland | 2013 | Solanum tuberosum | 5,010,533 | 4,406 | 50.15 | 4 | CP026979 |
P. polaris NIBIO1006 | Norway | 2010 | Solanum tuberosum | 4,826,824 | 4,056 | 52.03 | 0 | CP017481 |
P. punjabense SS95 | Pakistan | 2017 | Solanum tuberosum | 4,793,778 | 4,172 | 50.67 | 2 | CP038498 |
P. carotovorum subsp. carotovorum JR1.1 | South Korea | 2016 | Radish | 4,872,902 | 4,118 | 51.99 | 4 | CP034237 |
Strain | Country | Collection date | host | Assembly size | CDS | GC/% | CRISPR Arrays | GenBank |
---|---|---|---|---|---|---|---|---|
ZX67 | China | 2017 | Konjak | 4,909,724 | 4,977 | 51.27 | 5 | CP034211 |
P. wasabiae CFBP 3304 | Japan | 1987 | Eutrema wasabi | 5,043,228 | 4,368 | 50.55 | 3 | CP015750 |
P. brasiliense SX309 | China | 2015 | Cucumber | 4,966,299 | 4,252 | 52.18 | 3 | CP020350 |
P. versatile 14A | Belarus | 1978 | Solanum tuberosum | 4,997,114 | 4,335 | 51.77 | 3 | CP034276 |
P. basiliense BZA12 | China | 2015 | Cucumber | 4,924,809 | 4,251 | 51.98 | 3 | CP024780 |
P. parmentieri IFB5604 | Poland | 2014 | Solanum tuberosum | 4,877,201 | 4,249 | 50.56 | 4 | CP026983 |
P. parmentieri IFB5432 | Poland | 2013 | Solanum tuberosum | 5,010,533 | 4,406 | 50.15 | 4 | CP026979 |
P. polaris NIBIO1006 | Norway | 2010 | Solanum tuberosum | 4,826,824 | 4,056 | 52.03 | 0 | CP017481 |
P. punjabense SS95 | Pakistan | 2017 | Solanum tuberosum | 4,793,778 | 4,172 | 50.67 | 2 | CP038498 |
P. carotovorum subsp. carotovorum JR1.1 | South Korea | 2016 | Radish | 4,872,902 | 4,118 | 51.99 | 4 | CP034237 |
酶种类 | 酶基因 | 数量 |
---|---|---|
果胶裂解酶 | Pnl、KKH3_12920 | 2 |
多聚半乳糖醛酸酶 | KKH3_42200 | 1 |
鼠李糖半乳糖醛酸裂解酶 | rhiE、KKH3_05330 | 2 |
果胶甲基酯酶 | pemA | 1 |
果胶乙酰化酶 | KKH3_29960、KKH3_18740 | 2 |
纤维素酶 | celA1、KKH3_20670、KKH3_14460 | 3 |
葡聚糖酶 | bcsZ、cel5、celS、KKH3_22720、KKH3_41050 | 5 |
果胶酸裂解酶 | pelA、B、C、L、W、X,pel1、2、3,KKH3_37720,KKH3_37730,KKH3_37740,KKH3_21450,KKH3_21500,KKH3_28390,KKH3_17430,KKH3_08410和PCC21_038530 | 18 |
酶种类 | 酶基因 | 数量 |
---|---|---|
果胶裂解酶 | Pnl、KKH3_12920 | 2 |
多聚半乳糖醛酸酶 | KKH3_42200 | 1 |
鼠李糖半乳糖醛酸裂解酶 | rhiE、KKH3_05330 | 2 |
果胶甲基酯酶 | pemA | 1 |
果胶乙酰化酶 | KKH3_29960、KKH3_18740 | 2 |
纤维素酶 | celA1、KKH3_20670、KKH3_14460 | 3 |
葡聚糖酶 | bcsZ、cel5、celS、KKH3_22720、KKH3_41050 | 5 |
果胶酸裂解酶 | pelA、B、C、L、W、X,pel1、2、3,KKH3_37720,KKH3_37730,KKH3_37740,KKH3_21450,KKH3_21500,KKH3_28390,KKH3_17430,KKH3_08410和PCC21_038530 | 18 |
GO号 | 蛋白分泌系统类型 | GO号 | 蛋白分泌系统类型 |
---|---|---|---|
0030253 | I型分泌系统分泌蛋白 | 0030256 | Ⅰ型蛋白分泌系统复合体 |
0015628 | Ⅱ型分泌系统分泌蛋白 | 0015627 | Ⅱ型蛋白分泌系统复合体 |
0030254 | III型分泌系统分泌蛋白 | 0030257 | III型蛋白分泌系统复合体 |
0030255 | IV型分泌系统分泌蛋白 | COG3157U | VI型蛋白分泌系统成分HCP |
GO号 | 蛋白分泌系统类型 | GO号 | 蛋白分泌系统类型 |
---|---|---|---|
0030253 | I型分泌系统分泌蛋白 | 0030256 | Ⅰ型蛋白分泌系统复合体 |
0015628 | Ⅱ型分泌系统分泌蛋白 | 0015627 | Ⅱ型蛋白分泌系统复合体 |
0030254 | III型分泌系统分泌蛋白 | 0030257 | III型蛋白分泌系统复合体 |
0030255 | IV型分泌系统分泌蛋白 | COG3157U | VI型蛋白分泌系统成分HCP |
[1] | TESTER R F, AL-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan[J]. J sci food agric., 2016(96):3283-3291. |
[2] | WU J, LIU X, DIAO Y, et al. Authentication and characterization of a candidate antagonistic bacterium against soft rot of Amorphophallus konjac[J]. Crop protection, 2012(34):83-87. |
[3] |
HAUBEN L, MOORE E R, VAUTERIN L, et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae[J]. Syst appl microbiol, 1998, 21(3):384-397.
doi: 10.1016/S0723-2020(98)80048-9 URL |
[4] |
WALERON M, MISZTAK A, WALERON M, et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov[J]. Syst appl microbiol, 2018, 41(2):85-93.
doi: 10.1016/j.syapm.2017.11.005 URL |
[5] |
MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Mol Plant Pathol, 2012, 13(6): 614-629.
doi: 10.1111/j.1364-3703.2012.00804.x pmid: 22672649 |
[6] | OSBORNE F M. Short Protocols in Molecular Biology[M]. Science publishing house, 2008:39. |
[7] |
ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome biology, 2013, 14(7):405.
doi: 10.1186/gb-2013-14-6-405 pmid: 23822731 |
[8] |
KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J]. Nucleic acids res, 2004, 32(Database issue):277-280.
pmid: 14681412 |
[9] |
TATUSOV R L, FEDOROVA N D, JACKSON J D, et al. The COG database: an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4(1):41.
doi: 10.1186/1471-2105-4-41 URL |
[10] |
ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat genet, 2000, 25(1):25-29.
doi: 10.1038/75556 pmid: 10802651 |
[11] |
LI W, JAROSZEWSKI L, GODZIK A. Tolerating some redundancy significantly speeds up clustering of large protein databases[J]. Bioinformatics, 2002, 18(1):77-82.
pmid: 11836214 |
[12] |
AMOS B, ROLF A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic acids res, 2000, 28(1):45-48.
pmid: 10592178 |
[13] | MAGRANE M. UniProt Knowledgebase: a hub of integrated protein data[J]. Database:the journal of biological databases and curation, 2011(0):bar009. |
[14] |
MISTRY J, FINN R. Pfam: a domain-centric method for analyzing proteins and proteomes[J]. Methods mol biol, 2007, 396:43-58.
pmid: 18025685 |
[15] |
LOWE T M, EDDY S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic acids research, 1997, 25(5):955-964.
pmid: 9023104 |
[16] |
LAGESEN K, HALLIN P, RøDLAND EA, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic acids res, 2007, 35(9):3100-3108.
pmid: 17452365 |
[17] |
GARDNER P P, DAUB J, TATE J G, et al. Rfam: updates to the RNA families database[J]. Nucleic acids research, 2009, 37 (Database issue):136-140.
doi: 10.1093/nar/gkn766 pmid: 18953034 |
[18] |
CUI X, LU Z, WANG S, et al. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction[J]. Bioinformatics (Oxford, England), 2016, 32(12):i332-i340.
doi: 10.1093/bioinformatics/btw271 URL |
[19] |
HSIAO W, WAN I, JONES SJ, et al. IslandPath: aiding detection of genomic islands in prokaryotes[J]. Bioinformatics (Oxford, England), 2003, 19(3):418-420.
doi: 10.1093/bioinformatics/btg004 URL |
[20] |
ZHOU Y, LIANG Y, LYNCH KH, et al. PHAST: a fast phage search tool[J]. Nucleic acids res, 2011, 39(Web Server issue):347-352.
doi: 10.1093/nar/gkr485 pmid: 21672955 |
[21] |
SAHA S, BRIDGES S, MAGBANUA ZV, et al. Empirical comparison of ab initio repeat finding programs[J]. Nucleic acids res, 2008, 36(7):2284-2294.
doi: 10.1093/nar/gkn064 pmid: 18287116 |
[22] |
BENSON G. Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic acids res, 1999, 27(2):573-580.
pmid: 9862982 |
[23] |
GRISSA I1 VERGNAUD G, POURCEL C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats[J]. Nucleic acids res, 2007, 35(Web Server issue):52-57.
pmid: 17537822 |
[24] |
KRZYWINSKI M, SCHEIN J, BIROL I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome res, 2009, 19(9):1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[25] |
NIEMI O, LAINE P, KOSKINEN P, et al. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1[J]. Stand genomic sci, 2017, 12(1):1-8.
doi: 10.1186/s40793-016-0218-y URL |
[26] |
HYATT D, CHEN GL, LOCASCIO PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC bioinformatics, 2010, 11(1):119.
doi: 10.1186/1471-2105-11-119 URL |
[27] |
TATUSOVA T, DICUCCIO M, BADRETDIN A, et al. NCBI prokaryotic genome annotation pipeline[J]. Nucleic acids res, 2016, 44(14):6614-6624.
doi: 10.1093/nar/gkw569 pmid: 27342282 |
[28] |
JACOBSEN T, BARDIAUX B, FRANCETIC O, et al. Structure and function of minor pilins of type IV pili[J]. Medical microbiology and immunology, 2020, 209(3):301-308.
doi: 10.1007/s00430-019-00642-5 pmid: 31784891 |
[29] |
CHARKOWSKI A, BLANCO C, CONDEMINE G, et al. The role of secretion systems and small molecules in soft-rot enterobacteriaceae pathogenicity[J]. Annu rev phytopathol, 2012, 50(1):425-449.
doi: 10.1146/annurev-phyto-081211-173013 URL |
[30] |
NAVARRO-GARCIA F, RUIZ-PEREZ F, CATALDI Á, et al. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition[J]. Front microbiol, 2019, 10:1965.
doi: 10.3389/fmicb.2019.01965 URL |
[31] |
MCCARTHY R R, YU M, EILERS K, et al. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens[J]. Mol microbiol, 2019, 112(2):632-648.
doi: 10.1111/mmi.14279 URL |
[1] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[2] | 陈道, 王新, 江山, 张洁, 吴祖建, 丁新伦. 福建地区草莓斑驳病毒全基因组测序和分子变异分析[J]. 中国农学通报, 2022, 38(6): 94-101. |
[3] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[4] | 李乐, 张晓虎, 杨澜. 黄芩茎叶没食子酸-KGM复合保鲜膜在鸡蛋保鲜中的应用研究[J]. 中国农学通报, 2022, 38(35): 125-133. |
[5] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[6] | 张河庆, 吴婕, 韩帅, 席亚东, 李跃建, 梁根云. 4种周年轮作模式对耕作层土壤微生物的影响[J]. 中国农学通报, 2022, 38(20): 73-80. |
[7] | 张倩, 张国威, 商侃侃. 不同强化处理措施对铜污染土壤微生物多样性的影响[J]. 中国农学通报, 2022, 38(14): 96-103. |
[8] | 姜莉莉, 郭腾达, 宫庆涛, 武海斌, 孙瑞红. 不同物候期晚熟桃‘秋彤’微生物群落结构分析[J]. 中国农学通报, 2022, 38(1): 44-52. |
[9] | 蔡阳光, 段龙飞, 覃剑锋, 陈国爱, 郭邦利, 徐聪, 杨凉花. 外源硒在魔芋不同生育时期不同器官中的含量变化研究[J]. 中国农学通报, 2021, 37(36): 61-65. |
[10] | 万人源, 马会杰, 蒋宾, 杨丽冉, 周大鹏, 和明珠, 杨广容. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 2021, 37(33): 88-97. |
[11] | 聂志娟, 邵乃磷, 张志伟, 胡佳雯, 徐跑, 徐钢春. 两种养殖模式下黑鲷肠道及养殖水体菌群结构特征的研究[J]. 中国农学通报, 2021, 37(27): 155-164. |
[12] | 孙铭阳, 徐世强, 顾艳, 梅瑜, 周芳, 李静宇, 王继华. 穿心莲全长转录组测序及特性分析[J]. 中国农学通报, 2021, 37(27): 82-89. |
[13] | 高小宁, 吴自林, 黄咏虹, 刘睿, 齐永文. 甘蔗叶片响应褐锈病菌(Puccinia melanocephala)侵染的转录组分析[J]. 中国农学通报, 2021, 37(24): 102-109. |
[14] | 袁源, 李琳, 黄海辰, 刘国辉, 谢福泉, 傅俊生, 吴小平. 基于16S rDNA扩增子测序分析灵芝连作覆土细菌群落的变化[J]. 中国农学通报, 2021, 37(24): 116-123. |
[15] | 陆美光, 段海燕, 姜恭好. 亚麻全基因组关联分析的研究进展[J]. 中国农学通报, 2021, 37(21): 111-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||