 
 中国农学通报 ›› 2022, Vol. 38 ›› Issue (29): 52-60.doi: 10.11924/j.issn.1000-6850.casb2022-0224
        
               		夏涛( ), 李梦飞, 张雯, 陈雪英, 史银连, 王红莹, 李刚, 祝伟(
), 李梦飞, 张雯, 陈雪英, 史银连, 王红莹, 李刚, 祝伟( )
)
                  
        
        
        
        
    
收稿日期:2022-03-30
									
				
											修回日期:2022-06-15
									
				
									
				
											出版日期:2022-10-15
									
				
											发布日期:2022-10-14
									
			通讯作者:
					祝伟
							作者简介:夏涛,女,2002年出生,河南潢川人,本科在读,研究方向:分子遗传学和微生物学研究。通信地址:430074 湖北省武汉市中南民族大学,Tel:027-67842689,E-mail: 基金资助:
        
               		XIA Tao( ), LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei(
), LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei( )
)
			  
			
			
			
                
        
    
Received:2022-03-30
									
				
											Revised:2022-06-15
									
				
									
				
											Online:2022-10-15
									
				
											Published:2022-10-14
									
			Contact:
					ZHU Wei  			     					     	
							摘要:
菌株ZX67是魔芋软腐病病原菌胡萝卜果胶杆菌胡萝卜亚种(Pectobacterium carotovorum subsp. carotovorum),为进一步了解该病原菌的特性,便于更好地研究防治软腐病的方法,对该菌株进行了全基因组测序和分析。该菌株基因组总长度为4,909,724 bp,GC含量为51.27%,包含4,977个编码基因,其序列长度占总基因组的85.25%,预测的非编码RNA主要包括74个tRNA、22个rRNA及100个sRNA,有10个基因岛,6个转座子,预测存在2个前噬菌体,每个前噬菌体的平均长度为26,258 bp,有5个CRISPR序列,每个序列的平均长度为621 bp,并分析了与降解寄主细胞壁相关的裂解酶、与侵染植物相关的5种蛋白分泌系统。以上结果,为进一步了解软腐病病原菌的特性提供了机会,也为研究新的防治方法提供了新的出发点和思路。
中图分类号:
夏涛, 李梦飞, 张雯, 陈雪英, 史银连, 王红莹, 李刚, 祝伟. 魔芋软腐病病原菌果胶杆菌ZX67菌株全基因组测序及分析[J]. 中国农学通报, 2022, 38(29): 52-60.
XIA Tao, LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei. Complete Genome Sequence of Pectobacterium carotovorum Strain ZX67: An Plant Pathogen of Amorphophallus konjac Soft Rot Disease[J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 52-60.
| Genome features | Stat | In Genome/% | 
|---|---|---|
| Genome size | 4,909,724 bp | 100.00 | 
| Squence GC | 2,517,215 bp | 51.27 | 
| coding genes | 4,977×1,041 bp | 85.25 | 
| interspersed nuclear elements(bp) | 261×88 bp | 0.47 | 
| Tandem Repeat(bp) | 103×235 bp | 0.49 | 
| ncRNA | 45,076 bp | 0.92 | 
| Genomics Islands | 10×36,027 bp | 7.3 | 
| Transposon | 6×363 bp | 0.04 | 
| Prophage | 2×26,258 bp | 1.07 | 
| CRISPR | 5×621 bp | 0.06 | 
| Genome features | Stat | In Genome/% | 
|---|---|---|
| Genome size | 4,909,724 bp | 100.00 | 
| Squence GC | 2,517,215 bp | 51.27 | 
| coding genes | 4,977×1,041 bp | 85.25 | 
| interspersed nuclear elements(bp) | 261×88 bp | 0.47 | 
| Tandem Repeat(bp) | 103×235 bp | 0.49 | 
| ncRNA | 45,076 bp | 0.92 | 
| Genomics Islands | 10×36,027 bp | 7.3 | 
| Transposon | 6×363 bp | 0.04 | 
| Prophage | 2×26,258 bp | 1.07 | 
| CRISPR | 5×621 bp | 0.06 | 
| CRISPR_id | Start | End | CRISPR Length | DR_consensus | DR_length | Number of spacers | 
|---|---|---|---|---|---|---|
| Crispr_1 | 859546 | 860418 | 872 | TTTCTAAGCTGCCTATGCGGCAGTGAAC | 28 | 14 | 
| Crispr_2 | 868987 | 870516 | 1529 | GTTCACTGCCGGATAGGCAGCTTAGAAA | 28 | 25 | 
| Crispr_3 | 878333 | 878841 | 508 | TTTTCTAAGCTGCCTATCCGGCAGTGAAC | 29 | 8 | 
| Possible Crispr_4 | 2896052 | 2896150 | 98 | CGGGCCGTTGCTACGCAACGTTGAA | 25 | 1 | 
| Possible Crispr_5 | 3472205 | 3472305 | 100 | GACGGACAAGGATGTCCGCCATAAAAAAA | 29 | 1 | 
| CRISPR_id | Start | End | CRISPR Length | DR_consensus | DR_length | Number of spacers | 
|---|---|---|---|---|---|---|
| Crispr_1 | 859546 | 860418 | 872 | TTTCTAAGCTGCCTATGCGGCAGTGAAC | 28 | 14 | 
| Crispr_2 | 868987 | 870516 | 1529 | GTTCACTGCCGGATAGGCAGCTTAGAAA | 28 | 25 | 
| Crispr_3 | 878333 | 878841 | 508 | TTTTCTAAGCTGCCTATCCGGCAGTGAAC | 29 | 8 | 
| Possible Crispr_4 | 2896052 | 2896150 | 98 | CGGGCCGTTGCTACGCAACGTTGAA | 25 | 1 | 
| Possible Crispr_5 | 3472205 | 3472305 | 100 | GACGGACAAGGATGTCCGCCATAAAAAAA | 29 | 1 | 
| Strain | Country | Collection date | host | Assembly size | CDS | GC/% | CRISPR Arrays | GenBank | 
|---|---|---|---|---|---|---|---|---|
| ZX67 | China | 2017 | Konjak | 4,909,724 | 4,977 | 51.27 | 5 | CP034211 | 
| P. wasabiae CFBP 3304 | Japan | 1987 | Eutrema wasabi | 5,043,228 | 4,368 | 50.55 | 3 | CP015750 | 
| P. brasiliense SX309 | China | 2015 | Cucumber | 4,966,299 | 4,252 | 52.18 | 3 | CP020350 | 
| P. versatile 14A | Belarus | 1978 | Solanum tuberosum | 4,997,114 | 4,335 | 51.77 | 3 | CP034276 | 
| P. basiliense BZA12 | China | 2015 | Cucumber | 4,924,809 | 4,251 | 51.98 | 3 | CP024780 | 
| P. parmentieri IFB5604 | Poland | 2014 | Solanum tuberosum | 4,877,201 | 4,249 | 50.56 | 4 | CP026983 | 
| P. parmentieri IFB5432 | Poland | 2013 | Solanum tuberosum | 5,010,533 | 4,406 | 50.15 | 4 | CP026979 | 
| P. polaris NIBIO1006 | Norway | 2010 | Solanum tuberosum | 4,826,824 | 4,056 | 52.03 | 0 | CP017481 | 
| P. punjabense SS95 | Pakistan | 2017 | Solanum tuberosum | 4,793,778 | 4,172 | 50.67 | 2 | CP038498 | 
| P. carotovorum subsp. carotovorum JR1.1 | South Korea | 2016 | Radish | 4,872,902 | 4,118 | 51.99 | 4 | CP034237 | 
| Strain | Country | Collection date | host | Assembly size | CDS | GC/% | CRISPR Arrays | GenBank | 
|---|---|---|---|---|---|---|---|---|
| ZX67 | China | 2017 | Konjak | 4,909,724 | 4,977 | 51.27 | 5 | CP034211 | 
| P. wasabiae CFBP 3304 | Japan | 1987 | Eutrema wasabi | 5,043,228 | 4,368 | 50.55 | 3 | CP015750 | 
| P. brasiliense SX309 | China | 2015 | Cucumber | 4,966,299 | 4,252 | 52.18 | 3 | CP020350 | 
| P. versatile 14A | Belarus | 1978 | Solanum tuberosum | 4,997,114 | 4,335 | 51.77 | 3 | CP034276 | 
| P. basiliense BZA12 | China | 2015 | Cucumber | 4,924,809 | 4,251 | 51.98 | 3 | CP024780 | 
| P. parmentieri IFB5604 | Poland | 2014 | Solanum tuberosum | 4,877,201 | 4,249 | 50.56 | 4 | CP026983 | 
| P. parmentieri IFB5432 | Poland | 2013 | Solanum tuberosum | 5,010,533 | 4,406 | 50.15 | 4 | CP026979 | 
| P. polaris NIBIO1006 | Norway | 2010 | Solanum tuberosum | 4,826,824 | 4,056 | 52.03 | 0 | CP017481 | 
| P. punjabense SS95 | Pakistan | 2017 | Solanum tuberosum | 4,793,778 | 4,172 | 50.67 | 2 | CP038498 | 
| P. carotovorum subsp. carotovorum JR1.1 | South Korea | 2016 | Radish | 4,872,902 | 4,118 | 51.99 | 4 | CP034237 | 
| 酶种类 | 酶基因 | 数量 | 
|---|---|---|
| 果胶裂解酶 | Pnl、KKH3_12920 | 2 | 
| 多聚半乳糖醛酸酶 | KKH3_42200 | 1 | 
| 鼠李糖半乳糖醛酸裂解酶 | rhiE、KKH3_05330 | 2 | 
| 果胶甲基酯酶 | pemA | 1 | 
| 果胶乙酰化酶 | KKH3_29960、KKH3_18740 | 2 | 
| 纤维素酶 | celA1、KKH3_20670、KKH3_14460 | 3 | 
| 葡聚糖酶 | bcsZ、cel5、celS、KKH3_22720、KKH3_41050 | 5 | 
| 果胶酸裂解酶 | pelA、B、C、L、W、X,pel1、2、3,KKH3_37720,KKH3_37730,KKH3_37740,KKH3_21450,KKH3_21500,KKH3_28390,KKH3_17430,KKH3_08410和PCC21_038530 | 18 | 
| 酶种类 | 酶基因 | 数量 | 
|---|---|---|
| 果胶裂解酶 | Pnl、KKH3_12920 | 2 | 
| 多聚半乳糖醛酸酶 | KKH3_42200 | 1 | 
| 鼠李糖半乳糖醛酸裂解酶 | rhiE、KKH3_05330 | 2 | 
| 果胶甲基酯酶 | pemA | 1 | 
| 果胶乙酰化酶 | KKH3_29960、KKH3_18740 | 2 | 
| 纤维素酶 | celA1、KKH3_20670、KKH3_14460 | 3 | 
| 葡聚糖酶 | bcsZ、cel5、celS、KKH3_22720、KKH3_41050 | 5 | 
| 果胶酸裂解酶 | pelA、B、C、L、W、X,pel1、2、3,KKH3_37720,KKH3_37730,KKH3_37740,KKH3_21450,KKH3_21500,KKH3_28390,KKH3_17430,KKH3_08410和PCC21_038530 | 18 | 
| GO号 | 蛋白分泌系统类型 | GO号 | 蛋白分泌系统类型 | 
|---|---|---|---|
| 0030253 | I型分泌系统分泌蛋白 | 0030256 | Ⅰ型蛋白分泌系统复合体 | 
| 0015628 | Ⅱ型分泌系统分泌蛋白 | 0015627 | Ⅱ型蛋白分泌系统复合体 | 
| 0030254 | III型分泌系统分泌蛋白 | 0030257 | III型蛋白分泌系统复合体 | 
| 0030255 | IV型分泌系统分泌蛋白 | COG3157U | VI型蛋白分泌系统成分HCP | 
| GO号 | 蛋白分泌系统类型 | GO号 | 蛋白分泌系统类型 | 
|---|---|---|---|
| 0030253 | I型分泌系统分泌蛋白 | 0030256 | Ⅰ型蛋白分泌系统复合体 | 
| 0015628 | Ⅱ型分泌系统分泌蛋白 | 0015627 | Ⅱ型蛋白分泌系统复合体 | 
| 0030254 | III型分泌系统分泌蛋白 | 0030257 | III型蛋白分泌系统复合体 | 
| 0030255 | IV型分泌系统分泌蛋白 | COG3157U | VI型蛋白分泌系统成分HCP | 
| [1] | TESTER R F, AL-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan[J]. J sci food agric., 2016(96):3283-3291. | 
| [2] | WU J, LIU X, DIAO Y, et al. Authentication and characterization of a candidate antagonistic bacterium against soft rot of Amorphophallus konjac[J]. Crop protection, 2012(34):83-87. | 
| [3] | HAUBEN L, MOORE E R, VAUTERIN L, et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae[J]. Syst appl microbiol, 1998, 21(3):384-397. doi: 10.1016/S0723-2020(98)80048-9 URL | 
| [4] | WALERON M, MISZTAK A, WALERON M, et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov[J]. Syst appl microbiol, 2018, 41(2):85-93. doi: 10.1016/j.syapm.2017.11.005 URL | 
| [5] | MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Mol Plant Pathol, 2012, 13(6): 614-629. doi: 10.1111/j.1364-3703.2012.00804.x pmid: 22672649 | 
| [6] | OSBORNE F M. Short Protocols in Molecular Biology[M]. Science publishing house, 2008:39. | 
| [7] | ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome biology, 2013, 14(7):405. doi: 10.1186/gb-2013-14-6-405 pmid: 23822731 | 
| [8] | KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J]. Nucleic acids res, 2004, 32(Database issue):277-280. pmid: 14681412 | 
| [9] | TATUSOV R L, FEDOROVA N D, JACKSON J D, et al. The COG database: an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4(1):41. doi: 10.1186/1471-2105-4-41 URL | 
| [10] | ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat genet, 2000, 25(1):25-29. doi: 10.1038/75556 pmid: 10802651 | 
| [11] | LI W, JAROSZEWSKI L, GODZIK A. Tolerating some redundancy significantly speeds up clustering of large protein databases[J]. Bioinformatics, 2002, 18(1):77-82. pmid: 11836214 | 
| [12] | AMOS B, ROLF A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic acids res, 2000, 28(1):45-48. pmid: 10592178 | 
| [13] | MAGRANE M. UniProt Knowledgebase: a hub of integrated protein data[J]. Database:the journal of biological databases and curation, 2011(0):bar009. | 
| [14] | MISTRY J, FINN R. Pfam: a domain-centric method for analyzing proteins and proteomes[J]. Methods mol biol, 2007, 396:43-58. pmid: 18025685 | 
| [15] | LOWE T M, EDDY S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic acids research, 1997, 25(5):955-964. pmid: 9023104 | 
| [16] | LAGESEN K, HALLIN P, RøDLAND EA, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic acids res, 2007, 35(9):3100-3108. pmid: 17452365 | 
| [17] | GARDNER P P, DAUB J, TATE J G, et al. Rfam: updates to the RNA families database[J]. Nucleic acids research, 2009, 37 (Database issue):136-140. doi: 10.1093/nar/gkn766 pmid: 18953034 | 
| [18] | CUI X, LU Z, WANG S, et al. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction[J]. Bioinformatics (Oxford, England), 2016, 32(12):i332-i340. doi: 10.1093/bioinformatics/btw271 URL | 
| [19] | HSIAO W, WAN I, JONES SJ, et al. IslandPath: aiding detection of genomic islands in prokaryotes[J]. Bioinformatics (Oxford, England), 2003, 19(3):418-420. doi: 10.1093/bioinformatics/btg004 URL | 
| [20] | ZHOU Y, LIANG Y, LYNCH KH, et al. PHAST: a fast phage search tool[J]. Nucleic acids res, 2011, 39(Web Server issue):347-352. doi: 10.1093/nar/gkr485 pmid: 21672955 | 
| [21] | SAHA S, BRIDGES S, MAGBANUA ZV, et al. Empirical comparison of ab initio repeat finding programs[J]. Nucleic acids res, 2008, 36(7):2284-2294. doi: 10.1093/nar/gkn064 pmid: 18287116 | 
| [22] | BENSON G. Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic acids res, 1999, 27(2):573-580. pmid: 9862982 | 
| [23] | GRISSA I1 VERGNAUD G, POURCEL C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats[J]. Nucleic acids res, 2007, 35(Web Server issue):52-57. pmid: 17537822 | 
| [24] | KRZYWINSKI M, SCHEIN J, BIROL I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome res, 2009, 19(9):1639-1645. doi: 10.1101/gr.092759.109 pmid: 19541911 | 
| [25] | NIEMI O, LAINE P, KOSKINEN P, et al. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1[J]. Stand genomic sci, 2017, 12(1):1-8. doi: 10.1186/s40793-016-0218-y URL | 
| [26] | HYATT D, CHEN GL, LOCASCIO PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC bioinformatics, 2010, 11(1):119. doi: 10.1186/1471-2105-11-119 URL | 
| [27] | TATUSOVA T, DICUCCIO M, BADRETDIN A, et al. NCBI prokaryotic genome annotation pipeline[J]. Nucleic acids res, 2016, 44(14):6614-6624. doi: 10.1093/nar/gkw569 pmid: 27342282 | 
| [28] | JACOBSEN T, BARDIAUX B, FRANCETIC O, et al. Structure and function of minor pilins of type IV pili[J]. Medical microbiology and immunology, 2020, 209(3):301-308. doi: 10.1007/s00430-019-00642-5 pmid: 31784891 | 
| [29] | CHARKOWSKI A, BLANCO C, CONDEMINE G, et al. The role of secretion systems and small molecules in soft-rot enterobacteriaceae pathogenicity[J]. Annu rev phytopathol, 2012, 50(1):425-449. doi: 10.1146/annurev-phyto-081211-173013 URL | 
| [30] | NAVARRO-GARCIA F, RUIZ-PEREZ F, CATALDI Á, et al. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition[J]. Front microbiol, 2019, 10:1965. doi: 10.3389/fmicb.2019.01965 URL | 
| [31] | MCCARTHY R R, YU M, EILERS K, et al. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens[J]. Mol microbiol, 2019, 112(2):632-648. doi: 10.1111/mmi.14279 URL | 
| [1] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. | 
| [2] | 陈道, 王新, 江山, 张洁, 吴祖建, 丁新伦. 福建地区草莓斑驳病毒全基因组测序和分子变异分析[J]. 中国农学通报, 2022, 38(6): 94-101. | 
| [3] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. | 
| [4] | 李乐, 张晓虎, 杨澜. 黄芩茎叶没食子酸-KGM复合保鲜膜在鸡蛋保鲜中的应用研究[J]. 中国农学通报, 2022, 38(35): 125-133. | 
| [5] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. | 
| [6] | 张河庆, 吴婕, 韩帅, 席亚东, 李跃建, 梁根云. 4种周年轮作模式对耕作层土壤微生物的影响[J]. 中国农学通报, 2022, 38(20): 73-80. | 
| [7] | 张倩, 张国威, 商侃侃. 不同强化处理措施对铜污染土壤微生物多样性的影响[J]. 中国农学通报, 2022, 38(14): 96-103. | 
| [8] | 姜莉莉, 郭腾达, 宫庆涛, 武海斌, 孙瑞红. 不同物候期晚熟桃‘秋彤’微生物群落结构分析[J]. 中国农学通报, 2022, 38(1): 44-52. | 
| [9] | 蔡阳光, 段龙飞, 覃剑锋, 陈国爱, 郭邦利, 徐聪, 杨凉花. 外源硒在魔芋不同生育时期不同器官中的含量变化研究[J]. 中国农学通报, 2021, 37(36): 61-65. | 
| [10] | 万人源, 马会杰, 蒋宾, 杨丽冉, 周大鹏, 和明珠, 杨广容. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 2021, 37(33): 88-97. | 
| [11] | 聂志娟, 邵乃磷, 张志伟, 胡佳雯, 徐跑, 徐钢春. 两种养殖模式下黑鲷肠道及养殖水体菌群结构特征的研究[J]. 中国农学通报, 2021, 37(27): 155-164. | 
| [12] | 孙铭阳, 徐世强, 顾艳, 梅瑜, 周芳, 李静宇, 王继华. 穿心莲全长转录组测序及特性分析[J]. 中国农学通报, 2021, 37(27): 82-89. | 
| [13] | 高小宁, 吴自林, 黄咏虹, 刘睿, 齐永文. 甘蔗叶片响应褐锈病菌(Puccinia melanocephala)侵染的转录组分析[J]. 中国农学通报, 2021, 37(24): 102-109. | 
| [14] | 袁源, 李琳, 黄海辰, 刘国辉, 谢福泉, 傅俊生, 吴小平. 基于16S rDNA扩增子测序分析灵芝连作覆土细菌群落的变化[J]. 中国农学通报, 2021, 37(24): 116-123. | 
| [15] | 陆美光, 段海燕, 姜恭好. 亚麻全基因组关联分析的研究进展[J]. 中国农学通报, 2021, 37(21): 111-118. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||