中国农学通报 ›› 2022, Vol. 38 ›› Issue (20): 73-80.doi: 10.11924/j.issn.1000-6850.casb2021-0809
张河庆1(), 吴婕1, 韩帅1, 席亚东1(
), 李跃建2, 梁根云2
收稿日期:
2021-08-20
修回日期:
2021-11-04
出版日期:
2022-07-15
发布日期:
2022-08-23
通讯作者:
席亚东
作者简介:
张河庆,男,1986年出生,河南漯河人,助理研究员,硕士,研究方向:植物保护。通信地址:610066 成都市静居寺路20号 四川省农业科学院植物保护研究所,Tel:028-84590050,E-mail: 基金资助:
ZHANG Heqing1(), WU Jie1, HAN Shuai1, XI Yadong1(
), LI Yuejian2, LIANG Genyun2
Received:
2021-08-20
Revised:
2021-11-04
Online:
2022-07-15
Published:
2022-08-23
Contact:
XI Yadong
摘要:
为明确不同轮作模式下耕作层土壤微生物群落的变化,揭示水旱轮作有益于蔬菜可持续生产的潜在机理。本文设计4种常见的轮作模式,在同一地理区域固定试验田块进行长期轮作试验,并利用高通量测序技术测定土壤中真菌的ITS1区域序列和细菌的16S rDNA的V3-V4可变区序列,进行土壤微生物多样性分析。结果表明:Alpha多样性分析表明,在4种周年轮作模式下,耕作层土壤真菌群落多样性发生了显著变化,水旱轮作模式(SH)的Shannon指数显著高于嫁接模式(JJ)和蔬菜轮作LZ模式(LZ)的,而与蔬菜轮作LD模式(LD)的无显著差异。耕作层土壤细菌群落多样性和丰富度均发生显著变化,SH模式的Shannon指数和ACE指数均显著高于LD模式的,且SH模式的Shannon指数显著高于其他模式的。主坐标分析表明,4种周年轮作模式间,耕作层土壤微生物群落发生显著分化,SH模式和LZ模式均各自成组,JJ模式与LD模式聚为一组。组间物种差异显著性分析表明,SH模式有7个属真菌和26个属细菌的丰富度显著高于其他模式的,LD和LZ模式分别有4个属真菌和7个属细菌的丰富度显著高于其他模式的,JJ模式只有1个属细菌的丰富度显著高于其他模式的。不同轮作模式长期周年轮作下耕作层土壤微生物群落发生了显著变化。长期水旱轮作提高了土壤微生物群落多样性,增加了有益菌种类和相对丰度,更有利于蔬菜可持续生产。
中图分类号:
张河庆, 吴婕, 韩帅, 席亚东, 李跃建, 梁根云. 4种周年轮作模式对耕作层土壤微生物的影响[J]. 中国农学通报, 2022, 38(20): 73-80.
ZHANG Heqing, WU Jie, HAN Shuai, XI Yadong, LI Yuejian, LIANG Genyun. Effects of Four Annual Rotation Patterns on Soil Microbial Community[J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 73-80.
群落 | 轮作模式 | OTU数 | ACE指数 | Shannon指数 |
---|---|---|---|---|
土壤真菌群落 | JJ | 171.00±37.55a | 182.92±37.36a | 3.30±0.23a |
LD | 192.25±9.20a | 200.11±7.09a | 3.72±0.12ab | |
LZ | 226.50±21.27a | 231.30±21.86a | 3.23±0.17a | |
SH | 246.75±30.13a | 265.26±25.85a | 3.92±0.08b | |
土壤细菌群落 | JJ | 891.50±154.48ab | 915.18±164.09ab | 5.33±0.15a |
LD | 825.00±53.66a | 849.55±58.00a | 5.01±0.13a | |
LZ | 991.75±46.32ab | 1030.53±54.98ab | 5.23±0.10a | |
SH | 1147.00±15.25b | 1176.49±11.94b | 5.89±0.11b |
群落 | 轮作模式 | OTU数 | ACE指数 | Shannon指数 |
---|---|---|---|---|
土壤真菌群落 | JJ | 171.00±37.55a | 182.92±37.36a | 3.30±0.23a |
LD | 192.25±9.20a | 200.11±7.09a | 3.72±0.12ab | |
LZ | 226.50±21.27a | 231.30±21.86a | 3.23±0.17a | |
SH | 246.75±30.13a | 265.26±25.85a | 3.92±0.08b | |
土壤细菌群落 | JJ | 891.50±154.48ab | 915.18±164.09ab | 5.33±0.15a |
LD | 825.00±53.66a | 849.55±58.00a | 5.01±0.13a | |
LZ | 991.75±46.32ab | 1030.53±54.98ab | 5.23±0.10a | |
SH | 1147.00±15.25b | 1176.49±11.94b | 5.89±0.11b |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
LD | Trichoderma | 3 | 7.64 | 2.82 | 3.35 | SH | Acrostalagmus | 0 | 0.01 | 0 | 0.16 |
Talaromyces | 0.15 | 0.5 | 0.05 | 0.05 | Dactylella | 0 | 0 | 0.01 | 0.25 | ||
Symmetrospora | 0 | 0.15 | 0.01 | 0.03 | Ilyonectria | 0 | 0.03 | 0.14 | 0.45 | ||
Spencerozyma | 0 | 0.18 | 0 | 0 | Oidiodendron | 0.08 | 0.28 | 0.11 | 1.1 | ||
LZ | Ramicandelaber | 0 | 0 | 0.16 | 0.03 | Simplicillium | 0 | 0 | 0.01 | 0.23 | |
Pyrenochaetopsis | 0.01 | 0 | 1.39 | 0.37 | Ustilaginoidea | 0 | 0 | 0.23 | 1.1 | ||
Nigrospora | 0 | 0 | 3.94 | 0.62 | Rhizophagus | 0.01 | 0.01 | 0 | 0.07 | ||
Conlarium | 0.05 | 0.04 | 0.18 | 0.06 |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
LD | Trichoderma | 3 | 7.64 | 2.82 | 3.35 | SH | Acrostalagmus | 0 | 0.01 | 0 | 0.16 |
Talaromyces | 0.15 | 0.5 | 0.05 | 0.05 | Dactylella | 0 | 0 | 0.01 | 0.25 | ||
Symmetrospora | 0 | 0.15 | 0.01 | 0.03 | Ilyonectria | 0 | 0.03 | 0.14 | 0.45 | ||
Spencerozyma | 0 | 0.18 | 0 | 0 | Oidiodendron | 0.08 | 0.28 | 0.11 | 1.1 | ||
LZ | Ramicandelaber | 0 | 0 | 0.16 | 0.03 | Simplicillium | 0 | 0 | 0.01 | 0.23 | |
Pyrenochaetopsis | 0.01 | 0 | 1.39 | 0.37 | Ustilaginoidea | 0 | 0 | 0.23 | 1.1 | ||
Nigrospora | 0 | 0 | 3.94 | 0.62 | Rhizophagus | 0.01 | 0.01 | 0 | 0.07 | ||
Conlarium | 0.05 | 0.04 | 0.18 | 0.06 |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
SH | p_Acidobacteria | 0.252 | 0.058 | 0.360 | 1.680 | SH | Reyranella | 0.109 | 0.060 | 0.235 | 0.613 |
f_Acidobacteriaceae | 0.020 | 0.019 | 0.109 | 0.737 | Phenylobacterium | 0.175 | 0.072 | 0.185 | 0.405 | ||
f_Blastocatellaceae | 0.011 | 0.004 | 0.010 | 0.289 | Steroidobacter | 0.015 | 0.000 | 0.045 | 0.227 | ||
Blastocatellaceae_RB41 | 0.035 | 0.000 | 0.016 | 0.219 | Altererythrobacter | 0.083 | 0.064 | 0.061 | 0.190 | ||
p_Acidobacteria_o_Subgroup_7 | 0.009 | 0.000 | 0.010 | 0.173 | Polycyclovorans | 0.011 | 0.000 | 0.016 | 0.186 | ||
p_Acidobacteria_c_Subgroup_6 | 0.014 | 0.002 | 0.029 | 0.144 | f_Comamonadaceae | 0.005 | 0.011 | 0.008 | 0.174 | ||
Phycicoccus | 0.060 | 0.028 | 0.020 | 0.249 | f_BIrii41 | 0.035 | 0.013 | 0.033 | 0.173 | ||
Iamia | 0.006 | 0.000 | 0.015 | 0.134 | Dokdonella | 0.017 | 0.010 | 0.016 | 0.172 | ||
Patulibacter | 0.008 | 0.000 | 0.019 | 0.116 | Nitrosospira | 0.038 | 0.014 | 0.026 | 0.115 | ||
Gaiella | 0.018 | 0.024 | 0.011 | 0.103 | o_Chthoniobacterales | 0.022 | 0.000 | 0.030 | 0.180 | ||
Chitinophaga | 0.034 | 0.014 | 0.049 | 0.444 | LD | Mizugakiibacter | 8.547 | 12.341 | 5.829 | 3.952 | |
Niastella | 0.002 | 0.000 | 0.027 | 0.192 | p_Saccharibacteria | 2.129 | 4.213 | 1.068 | 1.912 | ||
Flavisolibacter | 0.018 | 0.011 | 0.019 | 0.108 | f_ODP1230B8.23 | 0.919 | 3.105 | 1.084 | 0.450 | ||
p_Chloroflexi_c_KD4-96 | 0.451 | 0.253 | 0.661 | 0.999 | f_Acetobacteraceae | 1.073 | 1.599 | 1.093 | 0.784 | ||
f_Anaerolineaceae | 0.018 | 0.005 | 0.021 | 0.364 | f_Rhodospirillaceae | 0.899 | 1.355 | 0.689 | 0.845 | ||
Nitrolancea | 0.164 | 0.179 | 0.177 | 0.321 | Alkanibacter | 0.162 | 0.260 | 0.077 | 0.016 | ||
Chloroflexi | 0.026 | 0.021 | 0.020 | 0.116 | Bdellovibrio | 0.143 | 0.223 | 0.059 | 0.090 | ||
Gemmatimonas | 0.789 | 0.319 | 0.750 | 1.656 | LZ | p_Acidobacteria | 1.081 | 1.569 | 6.140 | 0.402 | |
Gemmatirosa | 0.106 | 0.066 | 0.041 | 0.323 | Acidibacter | 1.781 | 1.975 | 3.208 | 1.923 | ||
p_Latescibacteria | 0.026 | 0.000 | 0.034 | 0.397 | Aquicella | 0.545 | 0.800 | 1.505 | 0.549 | ||
Nitrospira | 0.222 | 0.183 | 0.519 | 1.013 | Bradyrhizobium | 0.463 | 0.404 | 1.070 | 0.737 | ||
o_Nitrospirales_f_0319-6A21 | 0.022 | 0.000 | 0.022 | 0.185 | Granulicella | 0.266 | 0.398 | 0.846 | 0.404 | ||
Sphingomonas | 1.255 | 1.107 | 1.645 | 3.771 | Methylovirgula | 0.045 | 0.084 | 0.180 | 0.057 | ||
f_Nitrosomonadaceae | 0.217 | 0.074 | 0.415 | 2.433 | Roseiarcus | 0.018 | 0.021 | 0.142 | 0.079 | ||
Pseudolabrys | 0.692 | 0.439 | 1.039 | 1.503 | JJ | Methylobacterium | 0.127 | 0.030 | 0.011 | 0.006 | |
Haliangium | 0.308 | 0.209 | 0.392 | 1.094 |
轮作模式 | 属 | 相对丰度值/% | 轮作模式 | 属 | 相对丰度值/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
JJ | LD | LZ | SH | JJ | LD | LZ | SH | ||||
SH | p_Acidobacteria | 0.252 | 0.058 | 0.360 | 1.680 | SH | Reyranella | 0.109 | 0.060 | 0.235 | 0.613 |
f_Acidobacteriaceae | 0.020 | 0.019 | 0.109 | 0.737 | Phenylobacterium | 0.175 | 0.072 | 0.185 | 0.405 | ||
f_Blastocatellaceae | 0.011 | 0.004 | 0.010 | 0.289 | Steroidobacter | 0.015 | 0.000 | 0.045 | 0.227 | ||
Blastocatellaceae_RB41 | 0.035 | 0.000 | 0.016 | 0.219 | Altererythrobacter | 0.083 | 0.064 | 0.061 | 0.190 | ||
p_Acidobacteria_o_Subgroup_7 | 0.009 | 0.000 | 0.010 | 0.173 | Polycyclovorans | 0.011 | 0.000 | 0.016 | 0.186 | ||
p_Acidobacteria_c_Subgroup_6 | 0.014 | 0.002 | 0.029 | 0.144 | f_Comamonadaceae | 0.005 | 0.011 | 0.008 | 0.174 | ||
Phycicoccus | 0.060 | 0.028 | 0.020 | 0.249 | f_BIrii41 | 0.035 | 0.013 | 0.033 | 0.173 | ||
Iamia | 0.006 | 0.000 | 0.015 | 0.134 | Dokdonella | 0.017 | 0.010 | 0.016 | 0.172 | ||
Patulibacter | 0.008 | 0.000 | 0.019 | 0.116 | Nitrosospira | 0.038 | 0.014 | 0.026 | 0.115 | ||
Gaiella | 0.018 | 0.024 | 0.011 | 0.103 | o_Chthoniobacterales | 0.022 | 0.000 | 0.030 | 0.180 | ||
Chitinophaga | 0.034 | 0.014 | 0.049 | 0.444 | LD | Mizugakiibacter | 8.547 | 12.341 | 5.829 | 3.952 | |
Niastella | 0.002 | 0.000 | 0.027 | 0.192 | p_Saccharibacteria | 2.129 | 4.213 | 1.068 | 1.912 | ||
Flavisolibacter | 0.018 | 0.011 | 0.019 | 0.108 | f_ODP1230B8.23 | 0.919 | 3.105 | 1.084 | 0.450 | ||
p_Chloroflexi_c_KD4-96 | 0.451 | 0.253 | 0.661 | 0.999 | f_Acetobacteraceae | 1.073 | 1.599 | 1.093 | 0.784 | ||
f_Anaerolineaceae | 0.018 | 0.005 | 0.021 | 0.364 | f_Rhodospirillaceae | 0.899 | 1.355 | 0.689 | 0.845 | ||
Nitrolancea | 0.164 | 0.179 | 0.177 | 0.321 | Alkanibacter | 0.162 | 0.260 | 0.077 | 0.016 | ||
Chloroflexi | 0.026 | 0.021 | 0.020 | 0.116 | Bdellovibrio | 0.143 | 0.223 | 0.059 | 0.090 | ||
Gemmatimonas | 0.789 | 0.319 | 0.750 | 1.656 | LZ | p_Acidobacteria | 1.081 | 1.569 | 6.140 | 0.402 | |
Gemmatirosa | 0.106 | 0.066 | 0.041 | 0.323 | Acidibacter | 1.781 | 1.975 | 3.208 | 1.923 | ||
p_Latescibacteria | 0.026 | 0.000 | 0.034 | 0.397 | Aquicella | 0.545 | 0.800 | 1.505 | 0.549 | ||
Nitrospira | 0.222 | 0.183 | 0.519 | 1.013 | Bradyrhizobium | 0.463 | 0.404 | 1.070 | 0.737 | ||
o_Nitrospirales_f_0319-6A21 | 0.022 | 0.000 | 0.022 | 0.185 | Granulicella | 0.266 | 0.398 | 0.846 | 0.404 | ||
Sphingomonas | 1.255 | 1.107 | 1.645 | 3.771 | Methylovirgula | 0.045 | 0.084 | 0.180 | 0.057 | ||
f_Nitrosomonadaceae | 0.217 | 0.074 | 0.415 | 2.433 | Roseiarcus | 0.018 | 0.021 | 0.142 | 0.079 | ||
Pseudolabrys | 0.692 | 0.439 | 1.039 | 1.503 | JJ | Methylobacterium | 0.127 | 0.030 | 0.011 | 0.006 | |
Haliangium | 0.308 | 0.209 | 0.392 | 1.094 |
[1] |
BERENDSEN R L, PIETERSE C M J, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in plant science, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 URL |
[2] |
SCHLATTER D, KINKEL L, THOMASHOW L, et al. Disease suppressive soils: new insights from the soil microbiome[J]. Phytopathology, 2017, 107(11):1284-1297.
doi: 10.1094/PHYTO-03-17-0111-RVW URL |
[3] |
王孝林, 王二涛. 根际微生物促进水稻氮利用[J]. 植物学报, 2019, 54(3):285-287.
doi: 10.11983/CBB19060 |
[4] | 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6):10-20. |
[5] |
NUMAN M, BASHIR S, KHAN Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review[J]. Microbiological research, 2018, 209:21-32.
doi: 10.1016/j.micres.2018.02.003 URL |
[6] | BHARTI N, BARNAWAL D. Amelioration of salinity stress by PGPR:ACC deaminase and ROS scavenging enzymes activity. In: PGPR Amelioration in Sustainable Agriculture[M]. Woodhead publishing, 2019:85-106. |
[7] |
黄化刚, 吕立新, 张艳茗, 等. 微生物帮助烟草抗旱的机理及其应用[J]. 应用生态学报, 2017, 28(9):3099-3110.
doi: 10.13287/j.1001-9332.201709.013 |
[8] |
MENDES R, RAAIJMAKERS J M. Cross-kingdom similarities in microbiome functions[J]. The ISME journal, 2015, 9(9):1905-1907.
doi: 10.1038/ismej.2015.7 URL |
[9] |
PUTTEN W H, BRADFORD M A, BRINKMAN E P, et al. Where, when and how plant-soil feedback matters in a changing world[J]. Functional ecology, 2016, 30(7):1109-1121.
doi: 10.1111/1365-2435.12657 URL |
[10] |
HAAS D, DéFago G. Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nature reviews microbiology, 2005, 3(4):307-319.
doi: 10.1038/nrmicro1129 URL |
[11] |
MAKATE C, WANG R, MAKATE M, et al. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change[J]. SpringerPlus, 2016, 5(1):1135.
doi: 10.1186/s40064-016-2802-4 URL |
[12] | ZHANG L C, HUANG W, XIAO W, et al. Comparison of Soil Enzyme Activity and Microbial Community Structure between Rapeseed-Rice and Rice-Rice Plantings[J]. International journal of agriculture and bioligy, 2018, 20(8):1801-1808. |
[13] | HOU P F, CHIEN C H, CHIANG-HSIEH Y F, et al. Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community[J]. Scientific reports, 2018, 8(1):1-9. |
[14] |
STEINAUER K, CHATZINOTAS A, EISENHAUER N. Root exudate cocktails: the link between plant diversity and soil microorganisms?[J]. Ecology and Evolution, 2016, 6(20):7387-7396.
doi: 10.1002/ece3.2454 URL |
[15] |
GRUNERT O, ROBLES-AGUILAR A A, HERNANDEZ-SANABRIA E, et al. Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media[J]. Scientific reports, 2019, 9(1):1-15.
doi: 10.1038/s41598-018-37186-2 URL |
[16] |
ZHOU X G, ZHANG J, PAN D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions[J]. Biology and fertility of soils, 2018, 54:363-372.
doi: 10.1007/s00374-018-1265-x URL |
[17] |
ZHOU X G, WU F. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities[J]. Scientific reports, 2018, 8:4929.
doi: 10.1038/s41598-018-23406-2 URL |
[18] | AIL-ALI A, DERAVEL J, KRIER F,et al. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42[J]. Environmental science and pollution research, 2018,25, 30:29910-29920. |
[19] |
ALAM K M, ZHANG T, YAN Y L, et al. Transcriptional Analysis of Pseudomonas stutzeri A1501 Associated with Host Rice[J]. Advances in microbiology, 2016, 6(3):210-221.
doi: 10.4236/aim.2016.63021 URL |
[20] | SUGIYAMA A, YAZAKI K. Root exudates of legume plants and their involvement in interactions with soil microbes. Secretions and exudates in biological systems[M]. Springer, Berlin,Heidelberg, 2012:27-48. |
[21] |
DACHEV M, BíNa D, SOBOTKA R, et al. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica[J]. PLoS biology, 2017, 15(12):e2003943.
doi: 10.1371/journal.pbio.2003943 URL |
[22] |
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
doi: 10.1038/nature16461 URL |
[23] |
TANGAROMSUK J, POKETHITIYOOK P, KRUATRACHUE M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass[J]. Bioresource Technology, 2002, 85(1):103-105.
doi: 10.1016/S0960-8524(02)00066-4 URL |
[24] |
LIU S W, XU M, TUO L, et al. Phycicoccus endophyticus sp. nov., an endophytic actinobacterium isolated from Bruguiera gymnorhiza[J]. International journal of systematic and evolutionary microbiology, 2016, 66(3):1105-1111.
doi: 10.1099/ijsem.0.000842 URL |
[25] |
JIN D C, KONG X, LI H H, et al. Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris)[J]. International journal of systematic and evolutionary microbiology, 2016, 66(12):5056-5060.
doi: 10.1099/ijsem.0.001469 URL |
[26] | 何英, 张屹, 朱菲莹, 等. 西瓜枯萎病不同发病阶段根际微生物群落结构分析[J]. 湖南农业科学, 2019(9):47-50. |
[27] | HUYNH T T T. Biocontrol potential of Bradyrhizobium japonicum against soybean sudden death syndrome[D]. Iowa State: Iowa State university department of plant pathology and microbiology, 2019:11-50. |
[28] |
OSHKIN I Y, KULICHEVSKAYA I S, RIJPSTRA W I C, et al. Granulicella sibirica sp. nov., a psychrotolerant acidobacterium isolated from an organic soil layer in forested tundra, West Siberia[J]. International journal of systematic and evolutionary microbiology, 2019, 69(4):1195-1201.
doi: 10.1099/ijsem.0.003290 URL |
[29] |
GROSSI C E M, FANTINO E, SERRAL F, et al. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions[J]. Frontiers in plant science, 2020, 11:1-15.
doi: 10.3389/fpls.2020.00001 URL |
[30] | 尹彦舒, 崔曼, 崔伟国, 等. 大蒜连作障碍形成机理的研究进展[J]. 生物资源, 2018, 40(2):141-147. |
[1] | 陈道, 王新, 江山, 张洁, 吴祖建, 丁新伦. 福建地区草莓斑驳病毒全基因组测序和分子变异分析[J]. 中国农学通报, 2022, 38(6): 94-101. |
[2] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[3] | 韩亚静, 王欣宇, 历佳月, 黄群义, 王瀚婷, 叶乐夫, 付雪. 2种叶面肥对黄瓜-蓟马的影响[J]. 中国农学通报, 2022, 38(34): 113-119. |
[4] | 刘坤, 孙文松, 沈宝宇, 张天静. 辽宁新宾人参根腐病病原真菌的分离与鉴定[J]. 中国农学通报, 2022, 38(32): 86-91. |
[5] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[6] | 吕薇, 李胜男, 冯国军, 杨晓旭, 刘畅, 闫志山, 刘大军. 外源褪黑素降低黄瓜体内霜霉威残留的生理生化分析[J]. 中国农学通报, 2022, 38(28): 107-113. |
[7] | 石丽红, 孙梅, 唐海明, 文丽, 李超, 程凯凯, 李微艳, 肖小平. 不同施肥模式下稻田土壤氮组分及微生物多样性研究进展[J]. 中国农学通报, 2022, 38(27): 106-110. |
[8] | 李小艳, 倪畅, 刘旭. 不同防治方法对设施黄瓜根结线虫的防治效果[J]. 中国农学通报, 2022, 38(25): 130-133. |
[9] | 贺磊, 孙恩惠, 邓涛, 雍宬, 范肖东, 黄红英. 樟树加工剩余物育苗容器对黄瓜幼苗生长及生理特征的影响[J]. 中国农学通报, 2022, 38(25): 38-46. |
[10] | 银珊珊, 周国彦, 顾博文, 武春成, 闫立英, 谢洋. 褪黑素引发对干旱胁迫下黄瓜幼苗生理特性的影响[J]. 中国农学通报, 2022, 38(19): 30-36. |
[11] | 张倩, 张国威, 商侃侃. 不同强化处理措施对铜污染土壤微生物多样性的影响[J]. 中国农学通报, 2022, 38(14): 96-103. |
[12] | 姜莉莉, 郭腾达, 宫庆涛, 武海斌, 孙瑞红. 不同物候期晚熟桃‘秋彤’微生物群落结构分析[J]. 中国农学通报, 2022, 38(1): 44-52. |
[13] | 魏倩倩, 郑瑞瑞, 陈云坤, 胡春艳, 冯雪, 曹挥. 3种植物提取物对6种枯萎病菌的生物活性研究[J]. 中国农学通报, 2021, 37(9): 155-159. |
[14] | 杜宜新, 石妞妞, 阮宏椿, 连金番, 甘林, 陈福如. 银川大豆根腐病病原鉴定及种衣剂对其防治效果[J]. 中国农学通报, 2021, 37(8): 103-109. |
[15] | 万人源, 马会杰, 蒋宾, 杨丽冉, 周大鹏, 和明珠, 杨广容. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 2021, 37(33): 88-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||