[1] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023.
|
[2] |
BOUKHARI M E, BARAKATE M, BOUHIA Y, et al. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems[J]. Plants, 2020, 9(3):359.
|
[3] |
朱玥明, 陈朋, 刘德川, 等. 海藻寡糖的生理活性与酶法转化研究进展[J]. 食品与生物技术学报, 2022, 41(8):22-34.
|
[4] |
ZHANG C H, LI M X, RAUF A, et al. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives[J]. Critical reviews in food science and nutrition, 2023, 63(3):303-329.
|
[5] |
ZHU B W, NI F, XIONG Q, et al. Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications[J]. Critical reviews in food science and nutrition, 2021, 61(1):60-74.
|
[6] |
LU S, NA K, WEI J N, et al. Alginate oligosaccharides: the structure-function relationships and the directional preparation for application[J]. Carbohydrate polymers, 2022, 284:119225.
|
[7] |
JIANG C C, LIU Z, CHENG D Y, et al. Agarose degradation for utilization: enzymes, pathways, metabolic engineering methods and products[J]. Biotechnology advances, 2020, 45:107641.
|
[8] |
ZHANG C G, WANG W X, ZHAO X M, et al. Preparation of alginate oligosaccharides and their biological activities in plants: a review[J]. Carbohydrate research, 2020, 494:108056.
|
[9] |
GAO S K, YIN R, WANG X C, et al. Structure characteristics, biochemical properties, and pharmaceutical applications of alginate lyases[J]. Marine drugs, 2021, 19(11):628.
|
[10] |
SUN C X, ZHOU J L, DUAN G L, et al. Hydrolyzing Laminaria japonica with a combination of microbial alginate lyase and cellulase[J]. Bioresource technology, 2020, 311:123548.
|
[11] |
YAN J J, CHEN P, ZENG Y, et al. Production of neoagarobiose from agar through a dual-enzyme and two-stage hydrolysis strategy[J]. International journal of biological macromolecules, 2020, 160:288-295.
doi: S0141-8130(20)33368-7
pmid: 32470583
|
[12] |
ANDERSON R, BAYER P E, EDWARDS D. Climate change and the need for agricultural adaptation[J]. Current opinion in plant biology, 2020, 56:197-202.
doi: S1369-5266(19)30121-9
pmid: 32057694
|
[13] |
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488):266-269.
doi: 10.1126/science.aaz7614
pmid: 32299946
|
[14] |
刘海, 姜亮亮, 刘冰, 等. 近40年中国干旱特征及其对植被变化的影响[J]. 生态学报, 2023, 43(19):7936-7949.
|
[15] |
赵鸿, 蔡迪花, 王鹤龄, 等. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望[J]. 干旱气象, 2023, 41(2):187-206.
doi: 10.11755/j.issn.1006-7639(2023)-02-0187
|
[16] |
QIAO M, OUYANG L M. Recombinant production of alginate lyase for improved stress resistance in plants[J]. Journal of pure and applied microbiology, 2013, 7(3):1615-1624.
|
[17] |
LIU H, ZHANG Y H, YIN H, et al. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress[J]. Plant physiology and biochemistry, 2013, 62:33-40.
|
[18] |
LIU R Z, JIANG X L, GUAN H S, et al. Promotive effects of alginate-derived oligosaccharides on the inducing drought resistance of tomato[J]. Journal of ocean university of China, 2009, 8(3):303-311.
|
[19] |
LI J Q, WANG X Y, LIN X P, et al. Alginate-derived oligosaccharides promote water stress tolerance in cucumber (Cucumis sativus L.)[J]. Plant physiology and biochemistry, 2018, 130:80-88.
|
[20] |
徐常健. 低温胁迫下三种诱导剂对水稻幼苗抗寒的研究[D]. 大庆: 黑龙江八一农垦大学, 2022.
|
[21] |
赵子昕, 赵丽, 惠海滨, 等. 褐藻寡糖对茶树抗寒性影响的研究[J]. 茶叶通讯, 2023, 50(1):53-60.
|
[22] |
王建霞, 李昕, 范楷, 等. 海藻酸钠寡糖和赤霉素复配剂对亚低温胁迫后设施番茄生长发育的影响[J]. 山东农业科学, 2022, 54(7):122-128.
|
[23] |
赵欣蕊, 张翠英, 张树明, 等. 不同施肥模式对滨海盐碱地土壤性质及玉米产量的影响[J]. 中国土壤与肥料, 2023(8):84-90.
|
[24] |
刘玲, 冯乃杰, 郑殿峰, 等. 叶喷海藻酸钠寡糖对盐胁迫下水稻幼苗抗逆性及生理特性的影响[J]. 生态学杂志, 2022, 41(10):1887-1894.
|
[25] |
武迪, 张锋, 隋春莹, 等. 外源活性物质对小麦苗期抗逆性的影响[J]. 中国农学通报, 2022, 38(9):14-19.
doi: 10.11924/j.issn.1000-6850.casb2021-0871
|
[26] |
LATIQUE S, AYMEN E M, HALIMA C, et al. Alleviation of salt stress in durum wheat (Triticum durum L.) seedlings through the application of liquid seaweed extracts of Fucus spiralis[J]. Communications in soil science and plant analysis, 2017, 48(21):2582-2593.
|
[27] |
冯韶华, 俞一帆, 张旭峰, 等. 中国农田土壤重金属污染源解析研究进展[J]. 环境污染与防治, 2023, 45(9):1300-1306.
|
[28] |
张运红, 孙克刚, 杜君, 等. 海藻酸钠寡糖提高水稻幼苗对镉胁迫的抗性[J]. 中国土壤与肥料, 2017(4):140-146.
|
[29] |
张朝霞, 许加超, 盛泰, 等. 海藻寡糖对镉、铅单一污染的小油菜及土壤的影响[J]. 食品工业科技, 2014, 35(7):49-56.
|
[30] |
孟凡晓. 褐藻胶寡糖诱导植物抗病的研究[D]. 泰安: 山东农业大学, 2021.
|
[31] |
RISEH R S, VAZVANI M G, EBRAHIMI-ZARANDI M, et al. Alginate-induced disease resistance in plants[J]. Polymers, 2022, 14(4):661.
|
[32] |
ZHANG C G, HOWLADER P, LIU T M, et al. Alginate oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana[J]. Carbohydrate polymers, 2019, 225:115221.
|
[33] |
AITOUGUINANE M, BOUISSIL S, MOUHOUB A, et al. Induction of natural defenses in tomato seedlings by using alginate and oligoalginates derivatives extracted from Moroccan brown algae[J]. Marine drugs, 2020, 18(10):521.
|
[34] |
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of integrative plant biology, 2021, 63(1):180-209.
|
[35] |
ZHANG Y H, YIN H, ZHAO X M, et al. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling[J]. Carbohydrate polymers, 2014, 113(26):446-454.
|
[36] |
ZHANG Y H, LIU H, YIN H, et al. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.)[J]. Plant physiology and biochemistry, 2013, 71:49-56.
|
[37] |
YANG J R, SHEN Z P, SUN Z Y, et al. Growth stimulation activity of alginate-derived oligosaccharides with different molecular weights and mannuronate/guluronate ratio on Hordeum vulgare L.[J]. Journal of plant growth regulation, 2021, 40:91-100.
|
[38] |
LUAN L Q, NAGASAWA N, HA V T T, et al. Enhancement of plant growth stimulation activity of irradiated alginate by fractionation[J]. Radiation physics and chemistry, 2009, 78(9):796-799.
|
[39] |
SAMI F, YUSUF M, FAIZAN M, et al. Role of sugars under abiotic stress[J]. Plant physiology and biochemistry, 2016, 109:54-61.
doi: S0981-9428(16)30355-2
pmid: 27639065
|
[40] |
陈芊如, 李振, 汪娴娴, 等. 不同海洋寡糖对烟草生长、根际土壤特征和养分吸收的影响[J]. 山东农业科学, 2021, 53(10):72-78.
|
[41] |
LI Z M, DUAN S P, LU B S, et al. Spraying alginate oligosaccharide improves photosynthetic performance and sugar accumulation in citrus by regulating antioxidant system and related gene expression[J]. Frontiers in plant science, 2023, 13:2022.
|
[42] |
张金梅. 褐藻寡糖对黄瓜生长的影响及作用机制的探究[D]. 沈阳: 沈阳师范大学, 2021.
|
[43] |
黄文佳, 王健, 王桂艳, 等. 喷施海藻酸钠寡糖对水稻农艺性状和产量的影响[J]. 农业开发与装备, 2020(9):126-127.
|
[44] |
郑志红. 褐藻胶裂解酶AlyW201的表达、性质、固定化及产物褐藻寡糖在农业应用中的研究[D]. 大连: 大连海洋大学, 2023.
|
[45] |
李倩, 杨锐, 陈海敏, 等. 琼胶寡糖对秋葵生长及品质的影响[J]. 核农学报, 2019, 33(7):1465-1471.
doi: 10.11869/j.issn.100-8551.2019.07.1465
|
[46] |
代中旭, 艾新帅, 杨正华, 等. 海藻寡糖与复合肥配合施用对菜心产量和品质的影响[J]. 磷肥与复肥, 2022, 37(5):49-52.
|
[47] |
王学江, 李峰, 迟艳, 等. 褐藻寡糖对蕹菜生长量及生长速率的影响[J]. 分子植物育种, 2022, 20(14):4851-4857.
|
[48] |
严国富, 杜朋潮, 李方敏, 等. 褐藻酸寡糖对草莓光合特性及植株形态的影响[J]. 现代农业科技, 2023(15):60-62,69.
|
[49] |
GONZÁLEZ A, CASTRO J, VERA J, et al. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division[J]. Journal of plant growth regulation, 2013, 32(2):443-448.
|
[50] |
ZHANG Y H, ZHANG G, LIU L Y, et al. The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism of Brassica campestris L. var. utilis tsen et lee[J]. Plant growth regulation, 2011, 64(2):193-202.
|
[51] |
ZHANG Y H, YIN H, WANG W X, et al. Enhancement in photosynthesis characteristics and phytohormones of flowering Chinese cabbage (Brassica campestris L. var. utilis tsen et lee) by exogenous alginate oligosaccharides[J]. Journal of food agriculture and environment, 2013, 11(1):669-675.
|
[52] |
YANG K W, HAN S H, WANG Y T, et al. Sustainable production and in-place utilization of a liquid nitrogenous fertilizer[J]. Joule, 2023, 7(9):1948-1955.
|
[53] |
刘金萍, 刘艳丽, 邵雨晴, 等. 海藻复合肥对夏玉米产量及养分吸收利用的影响[J]. 河南农业大学学报, 2021, 55(3):429-434.
|
[54] |
LIU G X, OUYANG X, LI Z M, et al. Seaweed oligosaccharide synergistic silicate improves the resistance of rice plants to lodging stress under high nitrogen level[J]. Agronomy, 2022, 12(8):1750.
|
[55] |
CHEN Y P, LI J Y, HUANG Z B, et al. Impact of short-term application of seaweed fertilizer on bacterial diversity and community structure, soil nitrogen contents, and plant growth in maize rhizosphere soil[J]. Folia microbiologica, 2020, 65(3):591-603.
doi: 10.1007/s12223-019-00766-4
pmid: 31898151
|
[56] |
RATHORE S S, CHAUDHARY D R, BORICHA G N, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions[J]. South African journal of botany, 2009, 75(2):351-355.
|
[57] |
ARIOLI T, MATTNER S W, WINBERG P C. Applications of seaweed extracts in Australian agriculture: past, present and future[J]. Journal of applied phycology, 2015, 27(5):2007-2015.
pmid: 26435578
|
[58] |
ABBAS M, ANWAR J, KHAN R I, et al. Effect of seaweed extract on productivity and quality attributes of four onion cultivars[J]. Horticulturae, 2020, 6(2):28.
|