| [1] |
方修琦, 余卫红. 物候对全球变暖响应的研究综述[J]. 地球科学进展, 2002, 17(5):714-719.
|
| [2] |
ENGEL W, THOMAS E. Simulation of phenological development of wheat crops[J]. Agricultural systems, 1998, 58(1):1-24.
doi: 10.1016/S0308-521X(98)00028-6
URL
|
| [3] |
PORTER J R, SEMENOV M A. Crop responses to climatic variation[J]. Philosophical transactions of the royal society B, 2005,360:2021-2035.
|
| [4] |
方修琦, 陈发虎. 植物物候与气候变化[J]. 中国科学:地球科学, 2015,45:707-708.
|
| [5] |
陆佩玲, 于强, 贺庆棠. 植物物候对气候变化的响应[J]. 生态学报, 2006, 26(3):923-929.
|
| [6] |
刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1):14-24.
doi: 10.11821/dlxb202001002
|
| [7] |
MCMASTER G S, WILHELM W. Phenological responses of wheat and barley to water and temperature: improving simulation models[J]. The journal of agricultural science, 2003, 141(2):129-147.
doi: 10.1017/S0021859603003460
URL
|
| [8] |
LILLEY J M, FUKAI S. Effect of timing and severity of water deficit on four diverse rice cultivars III. Phenological development, crop growth and grain yield[J]. Field crops research, 1994, 37(3):225-234.
doi: 10.1016/0378-4290(94)90101-5
URL
|
| [9] |
单新兰, 苏占胜, 张智, 等. 宁夏山区春季降水对冬小麦生长发育的影响[J]. 干旱气象, 2012, 30(3):426-430.
|
| [10] |
周波涛, 钱进. IPCCAR6报告解读:极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17(6):713-718.
|
| [11] |
马树庆, 王琪, 吕厚荃, 等. 水分和温度对春玉米出苗速度和出苗率的影响[J]. 生态学报, 2012, 32(11):3378-3385.
|
| [12] |
米娜, 张玉书, 蔡福, 等. 土壤干旱胁迫对作物影响的模拟研究进展[J]. 生态学杂志, 2016, 35(9):2519-2526.
|
| [13] |
KAZAN K, LYONS R. The link between flowering time and stress tolerance[J]. Journal of experimental botany, 2016, 67(1):47-60.
doi: 10.1093/jxb/erv441
pmid: 26428061
|
| [14] |
杨小利, 刘庚山, 杨兴国. 甘肃黄土高原主要农作物水分胁迫敏感性[J]. 干旱地区农业研究, 2006, 24(4):90-93.
|
| [15] |
WILFRIED M, KARL-OTTO W, ALFRED S, et al. Dynamic phenological model for winter rye and winter barley[J]. European journal of agronomy, 2005, 23(2):123-135.
doi: 10.1016/j.eja.2004.10.002
URL
|
| [16] |
CEGLAR A, ČREPINŠEK Z, KAJFEŽ-BOGATAJ L, et al. The simulation of phenological development in dynamic crop model:the Bayesian comparison of different methods[J]. Agricultural and forest meteorology, 2011, 151(1):101-115.
doi: 10.1016/j.agrformet.2010.09.007
URL
|
| [17] |
NOUNA B B, KATERJI N, MASTRORILLI M. Using the CERES-Maize model in a semi-arid Mediterranean environment. Evaluation of model performance[J]. European journal of agronomy, 2000, 13(4):309-322.
doi: 10.1016/S1161-0301(00)00063-0
URL
|
| [18] |
MCMASTER G S, EDMUNDS D A, WILHELM W W, et al. PhenologyMMS: a program to simulate crop phenological responses to water stress[J]. Computers and electronics in agriculture, 2011, 77(1):118-125.
doi: 10.1016/j.compag.2011.04.003
URL
|
| [19] |
WU D, WANG P, JIANG C, et al. Use of a plastic temperature response function reduces simulation error of crop maturity date by half[J]. Agricultural and forest meteorology, 2020,280:107770.
|
| [20] |
刘健, 姚宁, 吝海霞, 等. 冬小麦物候期对土壤水分胁迫的响应机制与模拟[J]. 农业工程学报, 2016, 32(21):115-124.
|
| [21] |
LIU B, ZHANG B, YANG Z, et al. Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize[J]. The plant cell, 2021, 33(6):2058-2071.
doi: 10.1093/plcell/koab083
pmid: 33730156
|
| [22] |
李荣平, 周广胜, 张慧玲. 植物物候研究进展[J]. 应用生态学报, 2006, 17(3):541-544.
|
| [23] |
CHEN F, WANG H, ZHAO F, et al. The response mechanism and threshold of spring wheat to rapid drought[J]. Atmosphere, 2022,13:596.
|
| [24] |
BENEŠOVÁ M, HOLÁ D, FISCHER L, et al. The physiology and proteomics of drought tolerance in maize:early stomatal closure as a cause of lower tolerance to short-term dehydration?[J]. Plos one, 2012, 7(6):e38017.
doi: 10.1371/journal.pone.0038017
URL
|
| [25] |
REN S, QIN Q, REN H. Contrasting wheat phenological responses to climate change in global scale[J]. Science of the total environment, 2019,665:620-631.
|
| [26] |
ANJUM S A, XIE X, WANG L, et al. Morphological, physiological and biochemical responses of plants to drought stress[J]. African journal of agricultural research, 2011, 6(9):2026-2032.
|
| [27] |
SHRESTHA S, ASCH F, BRUECK H, et al. Phenological responses of upland rice grown along an altitudinal gradient[J]. Environmental and experimental botany, 2013,89:1-10.
|
| [28] |
WANG N, WANG J, WANG E, et al. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming[J]. European journal of agronomy, 2015,71:19-33.
|
| [29] |
CAO J, WANG H, LI J, et al. Improving the forecasting of winter wheat yields in northern china with machine learning-dynamical hybrid subseasonal-to-seasonal ensemble prediction[J]. Remote sensing, 2022, 14(7):1707.
doi: 10.3390/rs14071707
URL
|
| [30] |
付永硕, 李昕熹, 周轩成, 等. 全球变化背景下的植物物候模型研究进展与展望[J]. 中国科学:地球科学, 2020, 50(9):1206-1218.
|
| [31] |
ANDREW D R, TREVOR F K, MIRCO M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and forest meteorology, 2013, 169(3):156-173.
doi: 10.1016/j.agrformet.2012.09.012
URL
|
| [32] |
SCHABER J, BADECK F W. Physiology-based phenology models for forest tree species in Germany[J]. International journal of biometeorology, 2003, 47(4):193-201.
pmid: 12698325
|
| [33] |
莫非, 赵鸿, 王建永, 等. 全球变化下植物物候研究的关键问题[J]. 生态学报, 2011, 31(9):2593-2601.
|
| [34] |
ZHANNG T, ZHU J, YANG X. Non-stationary thermal time accumulation reduces the predictability of climate change effects in agriculture[J]. Agricultural and forest meteorology, 2008, 148(10):1412-1418.
doi: 10.1016/j.agrformet.2008.04.007
URL
|
| [35] |
范广洲, 贾志军. 植物物候研究进展[J]. 干旱气象, 2010, 28(3):250-255.
|