[1] |
SAHU K P, KUMAR A, PATEL A, et al. Rice blast lesions: an unexplored phyllosphere microhabitat for novel antagonistic bacterial species against Magnaporthe oryzae[J]. Microbial ecology, 2021, 81(3):731-745.
doi: 10.1007/s00248-020-01617-3
pmid: 33108474
|
[2] |
CHAIHARN M, THEANTANA T, PATHOM-AREE W. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi[J]. Pathogens, 2020, 9(2):126.
|
[3] |
LAM V B, MEYER T, ARIAS A A, et al. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance[J]. Microorganisms, 2021, 9(7):1441.
|
[4] |
ELSHARKAWY M M, SAKRAN R M, AHMAD A A, et al. Induction of systemic resistance against sheath blight in rice by different Pseudomonas isolates[J]. Life, 2022, 12(3):349.
|
[5] |
TOTAN A, HAREKRUSHNA S, SUSHMITA M, et al. Green silver nano-particles: synthesis using rice leaf extract, characterization, efficacy, and non-target effects[J]. Environmental science and pollution research international, 2021, 28(4):4452-4462.
|
[6] |
FOUAD H, YANG G, EL-SAYED A A, et al. Green synthesis of AgNP-ligand complexes and their toxicological effects on Nilaparvata lugens[J]. Journal of nanobiotechnology, 2021, 19(1):318.
doi: 10.1186/s12951-021-01068-z
pmid: 34645452
|
[7] |
TANG W, JIANG H, ARON O, et al. Endoplasmic reticulum-associated degradation mediated by MoHrd1 and MoDer1 is pivotal for appressorium development and pathogenicity of Magnaporthe oryzae[J]. Environmental microbiology, 2020, 22(12):4953-4973.
|
[8] |
ZHONG Z, CHEN M, LIN L, et al. Genetic variation bias toward noncoding regions and secreted proteins in the rice blast fungus Magnaporthe oryzae[J]. mSystems, 2020, 5(3):e00346-20.
|
[9] |
LU X, ZHOU Q, GUO Z, et al. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae[J]. eLife, 2020,9:e61605.
|
[10] |
CHEN X L, LIU C, TANG B, et al. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae[J]. PLoS pathogens, 2020, 16(2):e1008355.
|
[11] |
CAI X, YAN J, LIU C, et al. Perilipin LDP1 coordinates lipid droplets formation and utilization for appressorium-mediated infection in Magnaporthe oryzae[J]. Environmental microbiology, 2020, 22(7):2843-2857.
doi: 10.1111/1462-2920.15019
pmid: 32291878
|
[12] |
HE M, SU J, XU Y, et al. Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi[J]. Nature microbiology, 2020, 5(12):1565-1575.
doi: 10.1038/s41564-020-00790-y
pmid: 32958858
|
[13] |
WANG Z, DAI T, PENG Q, et al. Bioactivity of the novel fungicide SYP-14288 against plant pathogens and the study of its mode of action based on untargeted metabolomics[J]. Plant disease, 2020, 104(8):2086-2094.
doi: 10.1094/PDIS-01-20-0142-RE
pmid: 32544002
|
[14] |
XIN W, MAO Y, LU F, et al. In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae[J]. Pesticide biochemistry and physiology, 2020,162:78-85.
|
[15] |
WEI C, WANG S, LIU P, et al. The PdeK-PdeR two-component system promotes unipolar localization of FimX and pilus extension in Xanthomonas oryzae pv. oryzicola[J]. Science signaling, 2021, 14(700):eabi9589.
|
[16] |
WU G, ZHANG Y, WANG B, et al. Proteomic and transcriptomic analyses provide novel insights into the crucial roles of host-induced carbohydrate metabolism enzymes in Xanthomonas oryzae pv. oryzae virulence and rice-xoo interaction[J]. Rice, 2021, 14(1):57.
doi: 10.1186/s12284-021-00503-x
pmid: 34176023
|
[17] |
WU Y, WANG S, NIE W, et al. A key antisense sRNA modulates the oxidative stress response and virulence in Xanthomonas oryzae pv. oryzicola[J]. PLoS pathogens, 2021, 17(7):e1009762.
|
[18] |
QIAN B, LIU X, YE Z, et al. Phosphatase-associated protein MoTip41 interacts with the phosphatase MoPpe1 to mediate crosstalk between TOR and cell wall integrity signalling during infection by the rice blast fungus Magnaporthe oryzae[J]. Environmental microbiology, 2021, 23(2):791-809.
|
[19] |
CAI X, XIANG S, HE W, et al. Deubiquitinase Ubp3 regulates ribophagy and deubiquitinates Smo1 for appressorium-mediated infection by Magnaporthe oryzae[J]. Molecular plant pathology, 2022, 23(6):832-844.
doi: 10.1111/mpp.13196
pmid: 35220670
|
[20] |
ZHAO X, XU H, HE K, et al. A chromosome-level genome assembly of rice leaffolder, Cnaphalocrocis medinalis[J]. Molecular ecology resources, 2021, 21(2):561-572.
doi: 10.1111/1755-0998.13274
pmid: 33051980
|
[21] |
MA W, ZHAO X, YIN C, et al. A chromosome-level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest, Chilo suppressalis[J]. Molecular ecology resources, 2020, 20(1):268-282.
doi: 10.1111/1755-0998.13078
pmid: 31482680
|
[22] |
MA W, XU L, HUA H, et al. Chromosomal-level genomes of three rice planthoppers provide new insights into sex chromosome evolution[J]. Molecular ecology resources, 2020, 21(1):226-237.
|
[23] |
LIU F, LI X, ZHAO M, et al. Ultrabithorax is a key regulator for the dimorphism of wings, a main cause for the outbreak of planthoppers in rice[J]. National science review, 2020, 7(7):1181-1189.
doi: 10.1093/nsr/nwaa061
pmid: 34692142
|
[24] |
GAO H, ZHANG Y, LI Y, et al. KIF2A regulates ovarian development via modulating cell cycle progression and vitollogenin levels[J]. Insect molecular biology, 2020, 30(2):165-175.
|
[25] |
JIA Y L, ZHANG Y J, GUO D, et al. A mechanosensory receptor TMC regulates ovary development in the brown planthopper Nilaparvata lugens[J]. Frontiers in genetics, 2020,11:573603.
|
[26] |
WANG W, ZHU T, LAI F, et al. Identification and functional analysis of five genes that encode distinct isoforms of protein phosphatase 1 in Nilaparvata lugens[J]. Scientific reports, 2020, 10(1):10885.
doi: 10.1038/s41598-020-67735-7
pmid: 32616748
|
[27] |
GE L, ZHOU Z, SUN K, et al. The antibiotic jinggangmycin increases brown planthopper (BPH) fecundity by enhancing rice plant sugar concentrations and BPH insulin-like signaling[J]. Chemosphere, 2020,249:126463.
|
[28] |
XUE W H, LIU Y L, JIANG Y Q, et al. Molecular characterization of insulin-like peptides in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Insect molecular biology, 2020, 29(3):309-319.
doi: 10.1111/imb.12636
pmid: 31967370
|
[29] |
龚元成, 邵曙光, 施丽, 等. 竹山县水稻纹枯病发生规律和综合防控技术研究[J]. 湖北植保, 2020(3):42-43,49.
|
[30] |
徐晗, 闫晗, 褚晋, 等. 稻曲病菌致病力分化与接种处理条件优化[J]. 江苏农业科学, 2020(18):128-131.
|
[31] |
韦丽莉, 林兴华, 李文芳, 等. 滇西南稻区稻飞虱越冬情况调查[J]. 中国植保导刊, 2020(4):39-42.
|
[32] |
林泗海. 福建南安灯下白背飞虱种群数量动态分析[J]. 中国植保导刊, 2020(8):50-52.
|
[33] |
刘万才, 陆明红, 黄冲, 等. 水稻重大病虫害跨境跨区域监测预警体系的构建与应用[J]. 植物保护, 2020(1):87-92,100.
|
[34] |
邓金奇, 何行建, 李先喆, 等. 湖南汉寿应用虫情信息自动采集系统对水稻主要害虫的监测及识图统计效果[J]. 中国植保导刊, 2020(12):35-40.
|
[35] |
YAO Q, FENG J, TANG J, et al. Development of an automatic monitoring system for rice light-trap pests based on machine vision[J]. Journal of integrative agriculture, 2020, 19(10):2500-2513.
doi: 10.1016/S2095-3119(20)63168-9
|
[36] |
周晓, 包云轩, 王琳, 等. 稻纵卷叶螟为害水稻的冠层光谱特征及叶绿素含量估算[J]. 中国农业气象, 2020(3):173-186.
|
[37] |
SUN G J, LIU S H, LUO H L, et al. Intelligent monitoring system of migratory pests based on searchlight trap and machine vision[J]. Frontiers in plant science, 2022,13:897739.
|
[38] |
XU G, ZHONG X, SHI Y, et al. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity[J]. Science advances, 2020, 6(48):eabb7719.
|
[39] |
ZHANG C, FANG H, SHI X, et al. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor[J]. Plant biotechnology journal, 2020, 18(11):2354-2363.
|
[40] |
DU D, ZHANG C, XING Y, et al. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19[J]. Plant biotechnology journal, 2021, 19(5):1052-1064.
doi: 10.1111/pbi.13530
pmid: 33368943
|
[41] |
KE Y, YUAN M, LIU H, et al. The versatile functions of OsALDH2B1 provide a genic basis for growth-defense trade-offs in rice[J]. Proceedings of the national academy of sciences of the united states of America, 2020, 117(7):3867-3873.
doi: 10.1073/pnas.1918994117
pmid: 32024752
|
[42] |
LIU M H, KANG H, XU Y, et al. Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaporthe oryzae in rice[J]. Plant biotechnology journal, 2020, 18(6):1376-1383.
|
[43] |
DONG L, LIU S, KYAING M S, et al. Identification and fine mapping of Pi69(t), a new gene conferring broad-spectrum resistance against Magnaporthe oryzae from Oryza glaberrima Steud[J]. Frontiers in plant science, 2020,11:1190.
|
[44] |
TIAN D, LIN Y, CHEN Z, et al. Exploring the distribution of blast resistance alleles at the Pi2/9 locus in major rice-producing areas of China by a novel InDel marker[J]. Plant disease, 2020, 104(7):1932-1938.
|
[45] |
YANG D, LI S, LU L, et al. Identification and application of the Pigm-1 gene in rice disease resistance breeding[J]. Plant biology, 2020, 22(6):1022-1029.
|
[46] |
WANG Q, LI J, LU L, et al. Novel variation and evolution of AvrPiz-t of Magnaporthe oryzae in field isolates[J]. Frontiers in genetics, 2020,11:746.
|
[47] |
HOU H, FANG J, LIANG J, et al. OsExo70B1 positively regulates disease resistance to Magnaporthe oryzae in rice[J]. International journal of molecular sciences, 2020, 21(19):7049.
|
[48] |
TIAN D, YANG F, NIU Y, et al. Loss function of SL (sekiguchi lesion) in the rice cultivar Minghui 86 leads to enhanced resistance to (hemi) biotrophic pathogens[J]. BMC plant biology, 2020, 20(1):507.
|
[49] |
TAO H. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes[J]. Rice, 2021, 63(9):1639-1648.
|
[50] |
罗亮, 李容柏. 普通野生稻GXU186对褐飞虱稳定抗性的鉴定[J]. 南方农机, 2020(10):53.
|
[51] |
冯锐, 郭辉, 陈灿, 等. 分子标记辅助选育抗褐飞虱水稻恢复系[J]. 西南农业学报, 2020(3):562-567.
|
[52] |
王飞名, 孔德艳, 刘国兰, 等. 分子标记辅助选择改良‘黄华占’的褐飞虱抗性与抗旱性[J]. 上海农业学报, 2020(3):9-14.
|
[53] |
TAN J, WU Y, GUO J, et al. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper[J]. BMC genomics, 2020, 21(1):144.
doi: 10.1186/s12864-020-6556-6
pmid: 32041548
|
[54] |
NANDA S, YUAN S Y, LAI F X, et al. Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels[J]. Scientific reports, 2020. 10(1):19093.
doi: 10.1038/s41598-020-76198-9
pmid: 33154527
|
[55] |
MA F, YANG X, SHI Z, et al. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice[J]. New phytologist, 2020, 225(1):474-487.
doi: 10.1111/nph.16111
pmid: 31407341
|
[56] |
LI H, ZHOU Z, HUA H, et al. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation[J]. International journal of biological macromolecules, 2020,163:2270-2285.
|
[57] |
HUANG J, ZHANG N, SHAN J, et al. Salivary protein 1 of brown planthopper is required for survival and induces immunity response in plants[J]. Frontiers in plant science, 2020,11:571280.
|
[58] |
贾浩康, 刘玉娣, 侯茂林. RNAi和取食不同品种水稻后白背飞虱多铜氧化酶4基因的表达差异及生物学效应[J]. 昆虫学报, 2019(12):1351-1368.
|
[59] |
JI R, FU J, SHI Y, et al. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses[J]. New phytologist, 2021, 232(2):802-817.
doi: 10.1111/nph.17620
pmid: 34260062
|
[60] |
WU D, GUO J, ZHANG Q, et al. Necessity of rice resistance to planthoppers for OsEXO70H3 regulating SAMSL excretion and lignin deposition in cell walls[J]. New phytologist, 2022, 234(3):1031-1046.
doi: 10.1111/nph.18012
pmid: 35119102
|
[61] |
LIU Q, HU X, SU S, et al. Cooperative herbivory between two important pests of rice[J]. Nature communications, 2021, 12(1):6772.
doi: 10.1038/s41467-021-27021-0
pmid: 34799588
|
[62] |
ZENG J, ZHANG Z, ZHU Q, et al. Simplification of natural β-carboline alkaloids to obtain indole derivatives as potent fungicides against rice sheath blight[J]. Molecules, 2020, 25(5):1189.
|
[63] |
JIANG S, TANG X, CHEN M, et al. Design, synthesis and antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. Citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonamide moiety[J]. Pest management science, 2020, 76(3):853-860.
doi: 10.1002/ps.5587
pmid: 31419003
|
[64] |
WANG L, ZHOU X, LU H, et al. Synthesis and antibacterial evaluation of novel 1,3,4-oxadiazole derivatives containing sulfonate/carboxylate moiety[J]. Molecules, 2020, 25(7):1488.
|
[65] |
WANG W, ZHOU P, MO X, et al. Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field[J]. Proceedings of the national academy of sciences of the united states of America, 2020, 117(22):12017-12028.
doi: 10.1073/pnas.2003742117
pmid: 32434917
|
[66] |
YANG J, FENG J, HE K, et al. Preparation of thermosensitive buprofezin-loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control[J]. Pest management science, 2021, 77(10):4627-4637.
|
[67] |
WANG K, PENG Y, CHEN J, et al. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis)[J]. Pesticide biochemistry and physiology, 2020,165:104467.
|
[68] |
ZENG Q, YU C, CHANG X, et al. CeO2 nanohybrid as a synergist for insecticide resistance management[J]. Chemical engineering journal, 2022, 446:137074.
|
[69] |
XI C, AHMAD S, YU J, et al. Seed soating with Triflumezopyrim induces the rice plant's defense and inhibits the brown planthopper's feeding behavior[J]. Agronomy, 2022, 12(5):1202.
|
[70] |
LIU J X, CAI Y N, JIANG W Y, et al. Population structure and genetic diversity of fungi causing rice seedling blight in northeast China based on microsatellite markers[J]. Plant disease, 2020b, 104(3):868-874.
|
[71] |
SONG J, HAN C, ZHANG S, et al. Hormetic effects of carbendazim on mycelial growth and aggressiveness of Magnaporthe oryzae[J]. Journal of fungi, 2022, 8(10):1008.
|
[72] |
ZHANG Y C, FENG Z R, ZHANG S, et al. Baseline determination, susceptibility monitoring and risk assessment to triflumezopyrim in Nilaparvata lugens (Stål)[J]. Pesticide biochemistry and physiology, 2020,167:104608.
|
[73] |
DATTA J, WEI Q, YANG Q, et al. Current resistance status of the brown planthopper Nilaparvata lugens (Stål) to commonly used insecticides in China and Bangladesh[J]. Crop protection, 2021,150:105789.
|
[74] |
MIAO J, ZHAO G, WANG B, et al. Three point-mutations in cytochrome b confer resistance to trifloxystrobin in Magnaporthe oryzae[J]. Pest management science, 2020, 76(12):4258-4267.
|
[75] |
LI T, XU J, GAO H, et al. The G143A/S substitution of mitochondrially encoded cytochrome b (Cytb) in Magnaporthe oryzae confers resistance to quinone outside inhibitors[J]. Pest management science, 2022, 78(11):4850-4858.
doi: 10.1002/ps.7106
pmid: 36181417
|
[76] |
MENG X, YANG X, WU Z, et al. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis[J]. Pest management science, 2020, 76(11):3626-3635.
doi: 10.1002/ps.5897
pmid: 32406167
|
[77] |
HUANG J M, RAO C, WANG S, et al. Multiple target-site mutations occurring in lepidopterans confer resistance to diamide insecticides[J]. Insect biochemistry and molecular biology, 2020,121:103367.
|
[78] |
CHENG Y, LI Y, LI W, et al. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes[J]. Chemosphere, 2021,263:128269.
|
[79] |
WANG L X, TAO S, ZHANG Y, et al. Mechanism of metabolic resistance to pymetrozine in Nilaparvata lugens: Over-expression of cytochrome P450 CYP6CS1 confers pymetrozine resistance[J]. Pest management science, 2021, 77(9):4128-4137.
|
[80] |
ZHANG J, MAO K, REN Z, et al. Odorant binding protein 3 is associated with nitenpyram and sulfoxaflor resistance in Nilaparvata lugens[J]. International journal of biological macromolecules, 2022,209:1352-1358.
|
[81] |
WEI Y, LI L, HU W, et al. Suppression of rice blast by bacterial strains isolated from cultivated soda saline-sodic soils[J]. International journal of environmental research and public health, 2020, 17(14):5248.
|
[82] |
SHA Y, ZENG Q, SUI S. Screening and application of Bacillus strains isolated from nonrhizospheric rice soil for the biocontrol of rice blast[J]. Plant pathology journal, 2020, 36(3):231-243.
|
[83] |
ZHU Q, TANG M J, YANG Y, et al. Endophytic fungus Phomopsis liquidambaris B3 induces rice resistance to RSRD caused by Fusarium proliferatum and promotes plant growth[J]. Journal of the science of food and agriculture, 2021, 101(10):4059-4075.
doi: 10.1002/jsfa.11042
pmid: 33349945
|
[84] |
ZHAO Q, DING Y, SONG X, et al. Proteomic analysis reveals that naturally produced citral can significantly disturb physiological and metabolic processes in the rice blast fungus Magnaporthe oryzae[J]. Pesticide biochemistry and physiology, 2021,175:104835.
|
[85] |
PERUMAL A B, LI X, S Z, et al. Preparation and characterization of a novel green tea essential oil nanoemulsion and its antifungal mechanism of action against Magnaporthae oryzae[J]. Ultrasonics sonochemistry, 2021,76:105649.
|
[86] |
ZHOU A A, et al. Natural product citronellal can significantly disturb chitin synthesis and cell wall integrity in Magnaporthe oryzae[J]. Journal of fungi, 2022, 8(12):1310.
|
[87] |
DU J, LIU B, ZHAO T, et al. Silica nanoparticles protect rice against biotic and abiotic stresses[J]. Journal of nanobiotechnology, 2022, 20(1):197.
doi: 10.1186/s12951-022-01420-x
pmid: 35459250
|
[88] |
WANG Y, ZHAO Y, WANG X, et al. Functional characterization of the novel laminaripentaose-producing β-1,3-glucanase MoGluB and its biocontrol of Magnaporthe oryzae[J]. Journal of agricultural and food chemistry, 2021, 69(33):9571-9584.
|
[89] |
WANG Y, LIU M, WANG X, et al. A novel β-1,3-glucanase Gns6 from rice possesses antifungal activity against Magnaporthe oryzae[J]. Journal of plant physiology, 2021,265:153493.
|
[90] |
WU X, CHEN Y, LI C, et al. GroEL protein from the potential biocontrol agent Rhodopseudomonas palustris enhances resistance to rice blast disease[J]. Pest management science, 2021, 77(12):5445-5453.
|
[91] |
ANJAGO W M, ZENG W, CHEN Y, et al. The molecular mechanism underlying pathogenicity inhibition by sanguinarine in Magnaporthe oryzae[J]. Pest management science, 2021, 77(10):4669-4679.
|
[92] |
何雨婷, 何佳春, 魏琪, 等. 三种稻田常见螯蜂对半翅目害虫的寄主偏好性及控害作用[J]. 昆虫学报, 2020(8):999-1009.
|
[93] |
FAN D, ZHANG H, LIU T, et al. Control effects of Chelonus munakatae against Chilo suppressalis and impact on greenhouse gas emissions from paddy fields[J]. Front plant science, 2020,11:228.
|
[94] |
ZHAO Q, YE L, WANG Z, et al. Sustainable control of the rice pest, Nilaparvata lugens, using the entomopathogenic fungus Isaria javanica[J]. Pest management science, 2021b, 77(3):1452-1464.
|
[95] |
PENG G, XIE J, GUO R, et al. Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling major rice pests[J]. Journal of pest science, 2021, 94(3):969-980.
|
[96] |
魏琪, 朱旭晖, 何佳春, 等. 5种微生物杀虫剂对3种水稻主要害虫的室内毒力比较及致死表型观察[J]. 植物保护, 2022(4):165-174.
|
[97] |
王谆静, 项楚一, 金路, 等. 八角茴香浸提液对白背飞虱的取食、产卵选择性及杀虫活性的影响[J]. 植物保护学报, 2021, 48(4):907-913.
|
[98] |
宋星陈, 韩晶波, 李明, 等. 松香·海藻酸钠膜剂的制备及其对褐飞虱的防控效果[J]. 农药学学报, 2021(4):788-796.
|
[99] |
CHEN Y, RONG X, FU Q, et al. Effects of biochar amendment to soils on stylet penetration activities by aphid Sitobion avenae and planthopper Laodelphax striatellus on their host plants[J]. Pest management science, 2020, 76(1):360-365.
doi: 10.1002/ps.5522
pmid: 31207057
|
[100] |
周淑香, 李丽娟, 鲁新, 等. 诱捕器类型和悬挂高度对二化螟诱集效果的影响[J]. 东北农业科学, 2020(2):32-35.
|
[101] |
黄贤夫, 陈海波, 李程巧, 等. 性诱剂与黑光灯对二化螟的诱捕效果及其影响因子[J]. 农药学学报, 2020(4):602-610.
|
[102] |
FENG Z, WEI Q, YE Z, et al. Vibrational courtship disruption of Nilaparvata lugens using artificial disruptive signals[J]. Frontiers in plant science, 2022,13:897475.
|
[103] |
WANG J, XUE R, JU X, et al. Silicon-mediated multiple interactions: Simultaneous induction of rice defense and inhibition of larval performance and insecticide tolerance of Chilo suppressalis by sodium silicate[J]. Ecology and evolution, 2020, 10(11):4816-4827.
|
[104] |
孙李曈, 冯玲, 刘子睿, 等. 外源海藻糖对水稻生理生化及褐飞虱抗性的影响[J]. 应用昆虫学报, 2020(4):814-822.
|
[105] |
兰波, 杨迎青, 陈建, 等. 无人飞机低容量喷雾中影响药剂对水稻纹枯病和二化螟防治效果的因素分析[J]. 农药学学报, 2020(3):543-549.
|
[106] |
魏琪, 万品俊, 何佳春, 等. 不同作业方式和施药模式下杀虫剂对褐飞虱的防治效果[J]. 植物保护学报, 2021(3):483-492.
|
[107] |
王伟民, 张琳, 李秋红, 等. 植保无人机减量用药防治水稻纹枯病效果评价[J]. 上海农业科技, 2022(6):120-122.
|
[108] |
王庆胜. 利用无人机变量喷药技术防治水稻稻瘟病研究[J]. 现代化农业, 2022(5):20-22.
|
[109] |
陈宽兵, 李艳朋, 刘鸿恒. 静电喷雾装置在水稻病虫草害防治上的应用[J]. 农业科技通讯, 2022(6):83-86.
|