欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (32): 9-16.doi: 10.11924/j.issn.1000-6850.casb2025-0448

• 农学·农业基础科学 • 上一篇    下一篇

玉米矮秆基因研究进展

李金涛1(), 佘奎军2, 吴瑞2, 杨国虎2()   

  1. 1 宁夏大学农学院,银川 750021
    2 宁夏农林科学院农作物研究所,银川 750002
  • 收稿日期:2025-06-09 修回日期:2025-10-11 出版日期:2025-11-18 发布日期:2025-11-18
  • 通讯作者:
    杨国虎,男,1970年出生,宁夏银川人,研究员,博士,研究方向:玉米遗传与种质创新研究。通信地址:750002 宁夏银川市金凤区黄河东路590号 宁夏农林科学院农作物研究所,E-mail:
  • 作者简介:

    李金涛,男,1999年出生,宁夏中宁人,硕士研究生,研究方向:玉米种质改良。通信地址:750021 宁夏银川市西夏区贺兰山西路489号 宁夏大学农学院,E-mail:

  • 基金资助:
    宁夏回族自治区重点研发计划引才专项“应用基因组选择技术创制高产耐逆玉米基石种质”(2024BEH04067); 宁夏回族自治区重点研发计划项目“宁夏玉米优质高效制种技术研究与示范”(2025BBF02015)

Research Progress on Maize Dwarf Genes

LI Jintao1(), SHE Kuijun2, WU Rui2, YANG Guohu2()   

  1. 1 College of Agronomy, Ningxia University, Yinchuan 750021
    2 Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002
  • Received:2025-06-09 Revised:2025-10-11 Published:2025-11-18 Online:2025-11-18

摘要: 玉米是中国种植面积最大的农作物,在保障粮食安全中具有关键作用,矮化育种是通过优化株型、提升种植密度以突破玉米单产瓶颈的核心途径。本文系统综述玉米矮秆基因的研究进展,重点梳理玉米株高性状的生物学意义、矮秆遗传育种实践及植物激素对株高的调控机制,并提出未来研究方向。结果表明:1)玉米株高由节间数与节间长度共同调控,矮秆植株可通过缩短节间长度降低倒伏风险、优化冠层结构,提升光能利用效率与密植适应性,但需协调矮化与产量性状的关系;2)玉米矮秆遗传分为单基因与多基因两大体系,单基因体系中br2基因分子机制最明确(抑制茎秆细胞伸长,使茎秆长度较野生型减少40%~50%,穗位以下节间效应更显著),是当前应用最广的主效基因,多基因体系通过微效基因叠加可规避“一因多效”缺陷,已培育出“矮单268”等兼顾矮化与高产的品种;3)赤霉素(GA)、油菜素内酯(BR)、生长素(IAA)是调控株高的核心激素:GA合成相关基因(d1an1)或信号基因(d8d9)变异会导致矮化,BR合成基因(brd1na2)或信号基因(ZmBRI1a)功能缺失会引发植株矮小,IAA极性运输基因(br2)功能异常会导致下部茎节矮化。当前玉米矮秆育种存在可应用基因单一(已发现60多个矮秆基因,克隆40个左右)、遗传连锁累赘制约性状协同、新型矮秆基因(如K718dd8227定位基因)功能验证不足等问题。未来需通过挖掘适宜密植的中等矮秆基因、利用全基因组选择技术聚合多基因、融合表型组学与人工智能筛选理想株型,培育“矮秆抗倒、密植高产、广适易机收”的玉米品种,为玉米产业可持续发展提供支撑。

关键词: 玉米, 株高, 矮秆基因, 遗传育种, 植物激素, 株高调控, br2基因

Abstract:

Maize is the crop with the largest planting area in China, playing a crucial role in safeguarding national food security. Dwarfing breeding is a core approach to break the bottleneck of maize yield per unit area by optimizing plant architecture and increasing planting density. This paper systematically reviews the research progress on maize dwarf genes, with a focus on clarifying the biological significance of maize plant height traits, the practices of dwarf genetic breeding, and the regulatory mechanisms of plant hormones on plant height, while proposing future research directions. The results show that: (1) maize plant height is co-regulated by the number of internodes and internode length. Dwarf plants can reduce lodging risk by shortening internode length, optimize canopy structure, and improve light energy use efficiency and adaptability to dense planting, but it is necessary to coordinate the relationship between dwarfing and yield traits. (2) Maize dwarf genetics is divided into two major systems: single-gene and multi-gene. In the single-gene system, the br2 gene has the clearest molecular mechanism—it inhibits the elongation of stem cells, reducing stem length by 40% to 50% compared with the wild type, with a more significant effect on internodes below the ear position—and it is the most widely used major gene at present. The multi-gene system can avoid the defect of pleiotropy by accumulating minor-effect genes, and varieties such as 'Aidan 268' that balance dwarfing and high yield have been bred. (3) Gibberellin (GA), brassinosteroid (BR), and auxin (IAA) are the core hormones regulating plant height: mutations in GA synthesis-related genes (d1, an1) or signal genes (d8, d9) lead to dwarfing, loss of function of BR synthesis genes (brd1, na2) or signal genes (ZmBRI1a) causes stunted plants, and abnormal function of the IAA polar transport gene (br2) results in dwarfing of lower stem nodes. Currently, maize dwarf breeding has problems such as a relatively small number of applicable genes (more than 60 dwarf genes have been discovered, and about 40 have been cloned), genetic linkage drag restricting the coordination of traits, and insufficient functional verification of novel dwarf genes (such as the mapped genes K718d and d8227). In the future, it is necessary to explore medium dwarf genes suitable for dense planting, use genome-wide selection technology to aggregate multiple genes, and integrate phenomics with artificial intelligence to screen for ideal plant architecture, so as to breed maize varieties with the characters of dwarf stalks for lodging resistance, dense planting for high yield, wide adaptability and easy mechanical harvesting, and provide support for the sustainable development of the maize industry.

Key words: maize, plant height, dwarf gene, genetic breeding, plant hormone, plant height regulation, br2 gene