欢迎访问《中国农学通报》,

中国农学通报 ›› 2026, Vol. 42 ›› Issue (2): 57-64.doi: 10.11924/j.issn.1000-6850.casb2025-0681

• 生物科学 • 上一篇    下一篇

富含甘氨酸蛋白在植物响应非生物胁迫中的作用研究进展

黄金丽1(), 霍娇菡1, 邱荣微2, 林芳2, 陆彩云2, 许卫锋1(), 刘建平1()   

  1. 1 福建农林大学资源与环境学院, 福州 350002
    2 福建农林大学生命科学学院, 福州 350002
  • 收稿日期:2025-08-12 修回日期:2025-10-11 出版日期:2026-01-25 发布日期:2026-01-22
  • 通讯作者:
    许卫锋,男,1978年出生,江苏新沂人,教授,博士,主要从事植物营养与肥料方面的研究。通信地址:350002 福建省福州市仓山区建新镇上下店路福建农林大学海峡生态环境工程研究院7楼701,E-mail:
    刘建平,男,1985年出生,河北丰润人,副教授,博士,主要从事水稻应答逆境胁迫的分子机制研究。通信地址:350002 福建省福州市仓山区建新镇上下店路福建农林大学海峡生态环境工程研究院7楼702, E-mail:
  • 作者简介:

    黄金丽,女,2000年出生,广西南宁人,硕士研究生,主要从事水稻应答高温胁迫的分子机制研究。通信地址:350002 福建省福州市仓山区建新镇上下店路福建农林大学海峡生态环境工程研究院7楼703,E-mail:

  • 基金资助:
    国家自然科学基金“m6A甲基化阅读蛋白OsYTH11调控水稻耐热性的分子机制”(32572279); 国家自然科学基金“OsEIL5基因调控水稻耐热性的分子和生理机制”(32171932)

Research Progress on Role of Glycine-rich Proteins in Plant Response to Abiotic Stress

HUANG Jinli1(), HUO Jiaohan1, QIU Rongwei2, LIN Fang2, LU Caiyun2, XU Weifeng1(), LIU Jianping1()   

  1. 1 College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002
    2 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2025-08-12 Revised:2025-10-11 Published:2026-01-25 Online:2026-01-22

摘要:

富含甘氨酸蛋白(Glycine-rich proteins, GRPs)是一类含高比例甘氨酸(20%~70%)的蛋白质家族,广泛存在于原核与真核生物中,是植物应对非生物胁迫(高盐、干旱、高低温等)的重要调控因子,其通过RNA结合、蛋白互作等方式调控植物生长发育与抗逆响应,为明确其抗逆功能与应用潜力。本文综述了植物GRPs的结构特征、分类体系、生长发育功能,重点解析其在低温、高温、盐、干旱等非生物胁迫下的响应机制与调控路径。结果显示:(1)结构上,GRPs均含GR结构域,不同亚类还包含RNA识别基序(RRM)、冷休克结构域(CSD)、CCHC锌指等特有结构域;分为5类,其中IV类(GR-RBPs) 分布最丰富且具有RNA 结合功能;(2)功能上,GRPs具有明显的组织特异性,可通过促进细胞伸长、调节气孔开闭等参与植物生长发育;(3)低温胁迫下,Ⅳc亚家族GRPs拟南芥AtGRP2通过RNA伴侣活性增强植物抗冻性。高温胁迫下,水稻OsGRP3/OsGRP162、不结球白菜BcGRP1等受热诱导表达,维持植物耐热性。盐胁迫与渗透胁迫中,二色补血草LbGRP1通过提升抗氧化酶活性增强耐盐性;干旱胁迫下,拟南芥AtGRP2/AtGRP7、水稻OsGRP3等通过调控气孔运动、活性氧(ROS)代谢及木质素合成增强抗旱性。综上可得出,GRPs通过多结构域协同、多路径调控,成为植物响应非生物胁迫的核心因子。未来需结合多组学与遗传学技术,解析GRPs的上游调控网络及多胁迫协同响应机制,为抗逆作物育种提供理论依据与关键靶点。

关键词: 植物, 富含甘氨酸蛋白, 非生物胁迫, 生长发育, 抗逆性

Abstract:

Glycine-rich proteins (GRPs) are a family of proteins containing a high proportion of Glycine (20%-70%), which are widely present in prokaryotes and eukaryotes and are important regulatory factors for plants to respond to abiotic stresses (high salt, drought, high and low temperatures, etc.). They regulates plant growth, development and stress resistance response through RNA binding, protein interaction and other means. This article reviews the structural characteristics, classification system, biological functions and the mechanism of action under abiotic stress of plant GRPs. The results show that, structurally, all contain GR domains, and different subcategories also contain specific domains such as RNA recognition motif (RRM), cold shock domain (CSD), and CCHC zinc finger. It can be classified into five categories. Among them, category IV (GR-RBPs) contains RNA binding functions and is the most abundant in plants. Functionally, GRPs have obvious tissue specificity and can participate in plant growth and development by promoting cell elongation and regulating stomatal opening and closing. The role of GRPs in the response to abiotic stress is emphasized: under low-temperature stress, AtGRP2 of Arabidopsis thaliana, a GRPs of the Ⅳc subfamily, enhances the plant's frost resistance through RNA chaperone activity. Under high-temperature stress, the expression of OsGRP3/OsGRP162 in rice and BcGRP1 in non-head-forming Chinese cabbage is induced by heat, maintaining the heat tolerance of plants. In salt stress and osmotic stress, the Limonium bicolor LbGRP1 enhances salt tolerance by increasing the activity of antioxidant enzymes. Under drought stress, Arabidopsis AtGRP2/AtGRP7 and rice OsGRP3 enhance drought resistance by regulating stomatal movement, ROS metabolism and lignin synthesis. Finally, the future research directions are discussed, and it is proposed that multi-mics and genetic techniques should be combined to analyze the upstream regulatory network of GRPs and the collaborative response mechanism under multiple stresses, providing a theoretical basis for breeding stress-resistant crop varieties.

Key words: plant, glycine-rich proteins, abiotic stress, growth and development, stress resistance