[1] |
ABBAS M, RIBEIRO P F, SANTOS J L. Farming system change under different climate scenarios and its impact on food security: an analytical framework to inform adaptation policy in developing countries[J]. Mitigation and adaptation strategies for global change, 2023, 28(8):43.
|
[2] |
KASTNER T, CHAUDHARY A, GINGRICH S, et al. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition[J]. One earth, 2021, 4(10):1425-1443.
|
[3] |
KHAN S, HANJRA M A. Footprints of water and energy inputs in food production - Global perspectives[J]. Food policy, 2009, 34(2):130-140.
|
[4] |
GAO X, LI C, ZHANG M, et al. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil[J]. Field crops research, 2015,181:60-68.
|
[5] |
MOORE J A M, ABRAHAM P E, MICHENER JOSHUA K, et al. Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects[J]. New phytologist, 2022, 234(6):1914-1918.
|
[6] |
JIANG Y, YUE Y, WANG Z, et al. Plant biostimulant as an environmentally friendly alternative to modern agriculture[J]. Journal of agricultural and food chemistry, 2024, 72(10):5107-5121.
doi: 10.1021/acs.jafc.3c09074
pmid: 38428019
|
[7] |
MUANPRASAT C, CHATSUDTHIPONG V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications[J]. Pharmacology & therapeutics, 2017,170:80-97.
|
[8] |
MUKHTAR AHMED K B, KHAN M M A, SIDDIQUI H, et al. Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review[J]. Carbohydrate polymers, 2020,1:227:115331.
|
[9] |
LIAQAT F, ELTEM R. Chitooligosaccharides and their biological activities: A comprehensive review[J]. Carbohydrate polymers, 2018,184:243-259.
|
[10] |
TROMBOTTO S, LADAVIERE C, DELOLME F, et al. Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers[J]. Biomacromolecules, 2008, 9(7):1731-1738.
doi: 10.1021/bm800157x
pmid: 18547106
|
[11] |
ZHISHEN J D S. Eeffect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid[J]. Carbohydrate polymers, 2002,49:393-396.
|
[12] |
TISHCHENKO G, ŠIMŮNEK J, BRUS J, et al. Low-molecular-weight chitosans: Preparation and characterization[J]. Carbohydrate polymers, 2011, 86(2):1077-1081.
|
[13] |
XIA Z, WU S, CHEN J. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide[J]. International journal of biological macromolecules, 2013,59:242-245.
|
[14] |
MITTAL A, SINGH A, BUATONG J, et al. Chitooligosaccharide and its derivatives: potential candidates as food additives and bioactive components[J]. Foods, 2023, 12(20):3854-3882.
|
[15] |
POPA-NITA S, LUCAS J-M, LADAVIERE C, et al. Mechanisms involved during the ultrasonically induced depolymerization of chitosan: Characterization and control[J]. Biomacromolecules, 2009, 10(5):1203-1211.
|
[16] |
TERáN HILARES R, DOS SANTOS J G, SHIGUEMATSU N B, et al. Low-pressure homogenization of tomato juice using hydrodynamic cavitation technology: Effects on physical properties and stability of bioactive compounds[J]. Ultrasonics sonochemistry, 2019,54:192-197.
|
[17] |
WU Y, HUANG Y, ZHOU Y, et al. Degradation of chitosan by swirling cavitation[J]. Innovative food science & emerging technologies, 2014,23:188-193.
|
[18] |
VISHU KUMAR A. Low molecular weight chitosans: preparation with the aid of papain and characterization[J]. Biochimica et biophysica acta (BBA) - general subjects, 2004, 1670(2):137-146.
|
[19] |
CHENG C Y, CHANG C H, WU Y J, et al. Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus[J]. Journal of biological chemistry, 2006, 281(6):3137-3144.
|
[20] |
POSHINA D N, RAIK S V, POSHIN A N, et al. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review[J]. Polymer degradation and stability, 2018,156:269-278.
|
[21] |
WU S. Preparation of chitooligosaccharides from Clanis bilineata larvae skin and their antibacterial activity[J]. International journal of biological macromolecules, 2012, 51(5):1147-1150.
|
[22] |
HAMER S N, CORD-LANDWEHR S, BIARNéS X, et al. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases[J]. Scientific reports, 2015,3:5:8716.
|
[23] |
HEMBACH L, CORD-LANDWEHR S, MOERSCHBACHER B M. Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode[J]. Scientific reports, 2017, 7(1):17692.
doi: 10.1038/s41598-017-17950-6
pmid: 29255209
|
[24] |
CAI Q, GU Z, CHEN Y, et al. Degradation of chitosan by an electrochemical process[J]. Carbohydrate polymers, 2010, 79(3):783-785.
|
[25] |
GU Z, CAI Q, LIU Y, et al. Electrochemical degradation of chitosan using Ti/Sb-SnO2 Electrode[J]. Journal of polymers and the environment, 2012, 21(2):479-486.
|
[26] |
JIA X, MENG Q, ZENG H, et al. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway[J]. Scientific reports, 2016,18:6:26144.
|
[27] |
ZHANG H, ZHAO X, YANG J, et al. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide[J]. Plant cell reports, 2011, 30(6):1153-1162.
doi: 10.1007/s00299-011-1024-z
pmid: 21336582
|
[28] |
YANG A, YU L, CHEN Z, et al. Label-free quantitative proteomic analysis of chitosan oligosaccharide-treated rice infected with southern rice black-streaked dwarf virus[J]. Viruses, 2017, 9(5):115.
|
[29] |
COBOS R, MATEOS R M, ÁLVAREZ-PéREZ J M, et al. Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds[J]. Applied and environmental microbiology, 2015, 81(18):6474-6483.
doi: 10.1128/AEM.01818-15
pmid: 26162882
|
[30] |
KIM S W, PARK J K, LEE C H, et al. Comparison of the antimicrobial properties of chitosan oligosaccharides (COS) and EDTA against Fusarium fujikuroi causing rice bakanae disease[J]. Current microbiology, 2016, 72(4):496-502.
|
[31] |
SUN G, YANG Q, ZHANG A, et al. Synergistic effect of the combined bio-fungicides ε-poly- l -lysine and chitooligosaccharide in controlling grey mould ( Botrytis cinerea ) in tomatoes[J]. International journal of food microbiology, 2018,276:46-53.
|
[32] |
YIN H, FRETTé X C, CHRISTENSEN L P, et al. Chitosan oligosaccharides promote the content of polyphenols in greek oregano (Origanum vulgare ssp. hirtum)[J]. Journal of agricultural and food chemistry, 2011, 60(1):136-143.
|
[33] |
GUO W, YIN H, YE Z, et al. A comparison study on the interactions of two oligosaccharides with tobacco cells by time-resolved fluorometric method[J]. Carbohydrate polymers, 2012, 90(1):491-495.
doi: 10.1016/j.carbpol.2012.05.070
pmid: 24751069
|
[34] |
GOUGH C, CULLIMORE J. Lipo-chitooligosaccharide signaling in edosymbiotic plant-microbe interactions[J]. Molecular plant-microbe interactions, 2011, 24(8):867-878.
|
[35] |
TANAKA K, CHO S-H, LEE H, et al. Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings[J]. Journal of experimental botany, 2015, 66(19):5727-5738.
doi: 10.1093/jxb/erv260
pmid: 26049159
|
[36] |
HE Y, BOSE S, WANG W, et al. Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality[J]. International journal of molecular sciences, 2018, 19(8):2194.
|
[37] |
GUO X, YU Z, ZHANG M, et al. Enhancing the production of phenolic compounds during barley germination by using chitooligosaccharides to improve the antioxidant capacity of malt[J]. Biotechnology letters, 2018, 40(9-10):1335-1341.
doi: 10.1007/s10529-018-2582-8
pmid: 29876794
|
[38] |
LAN W, WANG W, YU Z, et al. Enhanced germination of barley (Hordeum vulgare L.) using chitooligosaccharide as an elicitor in seed priming to improve malt quality[J]. Biotechnology letters, 2016, 38(11):1935-1940.
|
[39] |
ABDEL LATEF A A H, ABU ALHMAD M F, KORDROSTAMI M, et al. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions[J]. Journal of plant growth regulation, 2020, 39(3):1293-1306.
|
[40] |
OZIMEK E, JAROSZUK-ŚCISEŁ J, BOHACZ J, et al. Synthesis of indoleacetic ccid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions[J]. International journal of molecular sciences, 2018, 19(10):3218.
|
[41] |
PARAĐIKOVIĆ N, TEKLIĆ T, ZELJKOVIĆ S, et al. Biostimulants research in some horticultural plant species—a review[J]. Food and energy security, 2018, 8(2):e00162.
|
[42] |
KOUR D, RANA K L, YADAV A N, et al. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability[J]. Biocatalysis and agricultural biotechnology, 2020,23:101487.
|
[43] |
RADHAKRISHNAN R, HASHEM A, ABD_ALLAH E F. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments[J]. Frontiers in physiology, 2017,8:667.
|
[44] |
DÍAZ-RUEDA P, MORALES DE LOS RÍOS L, ROMERO L C, et al. Old poisons, new signaling molecules: the case of hydrogen cyanide[J]. Journal of experimental botany, 2023, 74(19):6040-6051.
|
[45] |
LLORENTE B E, ALASIA M A, LARRABURU E E. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant[J]. New biotechnology, 2016, 33(1):32-40.
|
[46] |
ORTIZ-CASTRO R, CAMPOS-GARCíA J, LóPEZ-BUCIO J. Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides[J]. Journal of plant growth regulation, 2019, 39(1):254-265.
|
[47] |
HELLEQUIN E, MONARD C, CHORIN M, et al. Responses of active soil microorganisms facing to a soil biostimulant input compared to plant legacy effects[J]. Scientific reports, 2020, 10(1):13727.
doi: 10.1038/s41598-020-70695-7
pmid: 32792675
|
[48] |
CHATTOPADHYAY A, PUROHIT J, TIWARI K K, et al. Targeting transcription factors for plant disease resistance: shifting paradigm[J]. Current science, 2019, 117(10):1598-1607.
|
[49] |
TANG C, XU Q, ZHAO M, et al. Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: the emerging genomics era[J]. The crop journal, 2018, 6(1):60-67.
|
[50] |
TELI B, PUROHIT J, RASHID M M, et al. Omics insight on Fusarium Head Blight of wheat for translational research perspective[J]. Current genomics, 2020, 21(6):411-428.
|
[51] |
SUSIČ N, JANEŽIČ S, RUPNIK M, et al. Whole genome sequencing and comparative genomics of two nematicidal Bacillus strains reveals a wide range of possible virulence factors[J]. G3 genes genomes genetics, 2020, 10(3):881-890.
|
[52] |
MARCHE M G, CAMIOLO S, PORCEDDU A, et al. Survey of Brevibacillus laterosporus insecticidal protein genes and virulence factors[J]. Journal of invertebrate pathology, 2018,155:38-43.
|
[53] |
BLAINSKI J M L, DA ROCHA NETO A C, SCHIMIDT E C, et al. Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot[J]. Applied microbiology and biotechnology, 2018, 102(11):4741-4753.
|
[54] |
BENEDUZI A, AMBROSINI A, PASSAGLIA L M P. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents[J]. Genetics and molecular biology, 2012, 35(4):1044-1051.
|
[55] |
LU X, LIU S-F, YUE L, et al. Epsc involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana[J]. International journal of molecular sciences, 2018, 19(12):3795.
|
[56] |
O'BRIEN S, HODGSON D J, BUCKLING A. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa[J]. Proceedings of the royal society b-biological sciences, 2014, 281(1787):20240858.
|
[57] |
WANG Q, XIONG D, ZHAO P, et al. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17[J]. Journal of applied microbiology, 2011, 111(5):1065-1074.
|
[58] |
SULTANA S, ALAM S, KARIM M M. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation[J]. Journal of agriculture and food research, 2021,4:100150.
|
[59] |
GAMALERO E, GLICK B R. Bacterial modulation of plant ethylene levels[J]. Plant physiology, 2015, 169(1):13-22.
doi: 10.1104/pp.15.00284
pmid: 25897004
|
[60] |
VISWANATHAN V K, RAJARAM MANOHARAN S R, SUBRAMANIAN S, et al. Nanotechnology in spine surgery: a current update and critical review of the literature[J]. World neurosurgery, 2019,123:142-155.
|
[61] |
BUEHLER M J, YUNG Y C. Deformation and failure of protein materials in physiologically extreme conditions and disease[J]. Nature materials, 2009, 8(3):175-188.
doi: 10.1038/nmat2387
pmid: 19229265
|
[62] |
SABERI-RISE R, MORADI-POUR M. The effect of Bacillus subtilis Vru1 encapsulated in alginate- bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean[J]. International journal of biological macromolecules, 2020,152:1089-1097.
|
[63] |
ZAHRA Z, HABIB Z, HYUN H, et al. Overview on recent developments in the design, application, and impacts of nanofertilizers in agriculture[J]. Sustainability, 2022, 14(15):9397.
|
[64] |
AKHTAR N, ILYAS N. Role of nanosilicab to boost the activities of metabolites in Triticum aestivum facing drought stress[J]. Plant and soil, 2022, 477(1-2):99-115.
|
[65] |
ELIASPOUR S, SEYED SHARIFI R, SHIRKHANI A, et al. Effects of biofertilizers and iron nano-oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions[J]. Food science & nutrition, 2020, 8(11):5985-5998.
|
[66] |
ZAIM N S H B H, TAN H L, RAHMAN S M A, et al. Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection[J]. Journal of plant growth regulation, 2023, 42(12):7374-7402.
|