中国农学通报 ›› 2019, Vol. 35 ›› Issue (19): 34-40.doi: 10.11924/j.issn.1000-6850.casb19010002
王春丽,王周礼,杨建利,苟升学,陈文杰
收稿日期:
2019-01-02
修回日期:
2019-02-21
接受日期:
2019-02-22
出版日期:
2019-07-08
发布日期:
2019-07-08
通讯作者:
王周礼
基金资助:
Received:
2019-01-02
Revised:
2019-02-21
Accepted:
2019-02-22
Online:
2019-07-08
Published:
2019-07-08
摘要: 大豆富含异黄酮类次生物质,大豆异黄酮参与作物抗病性、环境适应性以及生长发育的调节,大豆异黄酮还是植物源雌激素,被用来预防和治疗多种疾病和肿瘤。本文详细论述了大豆异黄酮的结构、生物合成的调控及其信号转导、生理生态功能、对人类的医药保健作用及其应用等方面的研究进展,并分析了大豆异黄酮今后的发展趋势和有待加强的研究方向,为相关的研究提供理论依据。
王春丽,王周礼,杨建利,苟升学,陈文杰. 大豆异黄酮的合成、调控、生理生态功能及其应用研究进展[J]. 中国农学通报, 2019, 35(19): 34-40.
[1] 王金陵. 大豆的生态类型与大豆的栽培和育种[J]. 中国农业科学, 1961, (1): 24–27. [2] Anderson J J B, Anthony M S, Cline J M, et al. Health potential of soy isoflavones for menopausal women[J]. Public Health Nutr, 1999, 2(4): 489–504. [3] 汪涌, 刘凡, 胡玉珍, 等. 金雀异黄素对肾癌细胞系GRC-1细胞生物学行为的影响[J]. 第四军医大学学报, 2002, 23(17): 1580–1583. [4] 张延坤, 马燕. 大豆异黄酮的特性及其特殊生理功能[J]. 解放军预防医学杂志, 2003, 21(4): 307–310. [5] Khan H, Marya, Amin S, et al. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects[J]. Biomed Pharmacother, 2018, 101: 860–870. [6] Zhou Y J, Gao W, Rong X, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J Am Chem soc, 2012, 134(6): 3234–3241. [7] Serra A, Macià A, Maria-Paz R. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids[J]. Food Chem, 2012, 130(2): 383–393. [8] 马海田. 异黄酮植物雌激素对动物生长及其吸收机理的研究[D]. 南京: 南京农业大学, 2005. [9] Graham T L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates[J]. Plant Physiol, 1991, 95(2): 594–603. [10] Munro I C, Harwood M, Hlywka J J, et al. Soy isoflavones: A safety review[J]. Nutr Rev, 2003, 61 (1): 1–33. [11] Wang H, Murphy P A. Isoflavone content in commercial soybean foods[J]. J Agri Food Chem, 1994, 42(8): 1666–1673. [12] 杜丽娜, 张存莉, 朱玮, 等. 植物次生代谢合成途径及生物学意义[J].西北林学院学报, 2005, 20(3): 150–155. [13] Latunde-Dada A O, Cabello-Hurtado F, Czittrich N, et al. Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase[J]. J Biol Chem, 2001, 276(3): 1688–1695. [14] Shafiq M, Singh Z. Pre-harvest spray application of phenylpropanoids influences accumulation of anthocyanin and flavonoids in ‘Cripps Pink’ apple skin[J]. Sci Hortic-Amsterdam, 2018, 233: 141–148. [15] Morkunas I, Naro?na D, Nowak W, et al. Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine[J]. J Plant Physiol, 2011, 168: 424–433. [16] Akashi T, Aoki T, Ayabe S. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice[J]. Plant Physiol, 1999, 121(3): 821–828. [17] Steele C L, Gijzen M, Qutob D, et al. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean[J]. Arch Biochem Biophys, 1999, 367(1): 146–150. [18] Jung W, Yu O, Lau S-M C, et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes[J]. Nat Biotechnol, 2000, 18: 208–212. [19] Yu O, Shi J, Hession A O, et al. Metabolic engineering to increase isoflavone biosynthesis in soybean seed[J]. Phytochemistry, 2003, 63 (7): 753–763. [20] 王艳, 武林, 孙梦阳, 等.不同生育时期大豆异黄酮合成相关酶基因表达的分析[J], 大豆科学, 2012, 31(6): 887–893. [21] Oh H D, Yu D J, Chung S W, et al. Abscisic acid stimulates anthocyanin accumulation in ‘Jersey’ highbush blueberry fruits during ripening[J]. Food Chem, 2018, 244: 403–407. [22] Enoki S, Hattori T, Ishiai S, et al. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues[J]. J Plant Physiol, 2017, 219: 22–27. [23] Gra?a J P da, Ueda T E, Janegitz T, et al. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max[J]. Phytochemistry, 2016, 131: 84–91. [24] Ni J, Dong L, Jiang Z, et al. Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light[J]. Ind Crop Prod, 2018, 118: 102–110. [25] Li X, Zhang L, Ahammed G J, et al. Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.[J]. J Plant Physiol, 2017, 214: 145–151. [26] Jing X, Wang H, Gong B, et al. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew[J]. Plant Physiol Bioch, 2018, 124: 77–87. [27] Coutos-Thévenot P, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter[J]. J Exp Bot, 2001, 52(358): 901–910. [28] Hain R, Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol[J]. Plant Mol Biol, 1990, 15(2): 325–335. [29] Hain R, Reif H,SKrause E,Set al. Disease resistance results from foreign phytoalexin expression in a novel plant[J]. Nature, 1993, 361: 153–156. [30] Hipskind J D, Paiva N L. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis[J]. Mol Plant Microbe In, 2000, 13: 551–562. [31] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J]. Plant Mol Biol, 1994, 24: 743–755. [32] 李润植,毛雪,李彩霞, 等. 棉花诱导抗蚜性与次生代谢相关酶活性的关系[J]. 山西农业大学学报(自然科学版). 1998, 18(2): 165–168. [33] 朱宏波, 腾冰, 高凤兰, 等. 不同抗性大豆品种感染SMV1后若干生化变化[J]. 西北农业学报,2001, 10(3): 38–40. [34] 段玉玺, 李海燕, 陈立杰, 等. 大豆不同品种根内类黄酮提取物对大豆胞囊线虫的抑制作用[J]. 大豆科学, 2014, (5): 724–727. [35] 李海燕, 段玉玺, 陈立杰. 大豆植株中类黄酮对大豆胞囊线虫的毒杀效果及机理研究[J]. 作物杂志, 2015, (1): 57-60. [36] 张军, 杨庆凯. 大豆接种SCN3 后根部酚类化合物含量动态分析[J]. 中国油料作物学报. 2001, 23(4): 44–47. [37] Liang J, He J. Protective role of anthocyanins in plants under low nitrogen stress[J]. Biochem Bioph Res Co, 2018, 498: 946–953. [38] Xu W,Peng H, Yang T, et al. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J]. Plant Physiol Bioch, 2014, 82: 289–298. [39] Topcu Y, Dogan A, Sahin-Nadeem H, et al. Morphological and biochemical responses of broccoli florets to supplemental ultraviolet-B illumination[J]. Agr Ecosyst Environ. 2018, 259: 1–10. [40] Shi L, Cao S, Chen W, et al. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit[J]. Sci Hortic-Amsterdam, 2014, 179: 98–102. [41] Janas K M, Cvikrová M, Palagiewicz A, et al. Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature[J]. Plant Sci, 2002, 163: 369-373. [42] Ma M, Wang P, Yang R, et al. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B[J]. Food Chem, 2018, 250: 259–267. [43] Liang B,Huang X,Zhang G,et al. Effect of lanthanum on plants under supplementary ultraviolet-B radiation: effect of lanthanum on flavonoid contents in soybean seedlings exposed to supplementary ultraviolet-B radiation[J]. J Rare Earth, 2006, 24(4): 613–616. [44] 郭婕, 张杰. 黄豆、黑豆、黄豆芽总黄酮含量及抗氧化活性[J]. 周口师范学院学报, 2009, 26(5): 83–85, 92. [45] 卢蕊, 武玲, 朱山, 等. 不同光照条件下大豆发芽过程中异黄酮含量的比较与抗氧化活性研究[J]. 粮舍与油脂, 2017, 30(6): 78–80. [46] Kobayashi H, Graven Y N, Broughton W J, et al. Flavonoids induce temporal shifts in gene-expression ofSnod-box controlled loci inSRhizobiumSsp. NGR234[J]. Mol Microbiol, 2004, 51(2): 335–347. [47] Pan B, Zhang F, Smith D L. Genistein addition to the soybean rooting medium increases nodulation[J]. J Plant Nutr, 1998, 21(8): 1631–1639. [48] Maggilini M, Bonofiglio D, Marsico S, et al. Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells[J]. Mol Pharmacol, 2001, 60(3): 595–602. [49] Barnes S. Effect of genistein on in vitro and in vivo models of cancer[J]. J Nutr, 1995, 125(3): 777–783. [50] Lopez-Lazaro M. Flavonoids as anticancer agents: Structure-activity relationship study[J]. Curr Med Chem Anti Canc Agents, 2002, 2(6): 691–714. [51] 刘士君, 方长清, 李建华. 蛋白酪氨酸激酶抑制剂Genistein抑制肺癌细胞A549体外侵袭作用的研究[J]. 微生物学杂志, 2009, 29(6): 88–93. [52] Nkengfack A E, Vouffo T W, Fomum Z T, et al. Prenylated isoflavanone from the roots of Erythrina sigmoidea[J]. Phytochemistry, 1994, 36(4): 1047–1051. [53] 李洁. 异黄酮化合物的生物效能及在血吸虫病控制中的作用[J]. 中国病原生物学杂志,2006, 1(1): 62–63. |
[1] | 金梅娟, 佘旭东, 沈明星, 陆长婴, 陶玥玥, 王海候. 稻田构建垄型土槽耦合基质栽培草莓的生产效应研究[J]. 中国农学通报, 2023, 39(1): 71-76. |
[2] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[3] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[4] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[5] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[6] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[7] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[8] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[9] | 武志斌, 黄超, 雷媛, 敬峰, 刘战东. 不同产量水平下冬小麦水肥利用特性研究[J]. 中国农学通报, 2022, 38(8): 64-71. |
[10] | 郑本川, 张锦芳, 蒋俊, 崔成, 柴靓, 黄友涛, 周正鉴, 李浩杰, 蒋梁材. 不同熟期“川油”系列甘蓝型油菜品种主要性状与产量的相关分析[J]. 中国农学通报, 2022, 38(7): 7-17. |
[11] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[12] | 钮力亚, 王伟伟, 张玉洁, 邹景伟, 王志, 陆莉, 王奉芝, 王伟, 于亮. 小麦品质性状及产量性状对馒头面条评分的影响[J]. 中国农学通报, 2022, 38(6): 129-133. |
[13] | 姚金保, 杨学明, 周淼平, 张鹏. 江苏省小麦参试品种(系)产量与产量构成因素分析[J]. 中国农学通报, 2022, 38(6): 15-19. |
[14] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. |
[15] | 董红业, 徐婷, 刘文豪, 李强, 柳延涛. 新疆塔里木盆地东南缘花生主要农艺性状的分析与综合评价[J]. 中国农学通报, 2022, 38(6): 26-30. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 600
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||