中国农学通报 ›› 2020, Vol. 36 ›› Issue (10): 87-94.doi: 10.11924/j.issn.1000-6850.casb20191100820
所属专题: 水稻
收稿日期:
2019-11-13
修回日期:
2020-01-06
出版日期:
2020-04-05
发布日期:
2020-03-19
基金资助:
Liu He1(), Yingjie Song1, Chunlin Long1,2(
)
Received:
2019-11-13
Revised:
2020-01-06
Online:
2020-04-05
Published:
2020-03-19
摘要:
以元阳哈尼梯田水稻农家品种种植现状为例,回顾了现有的关于元阳哈尼梯田水稻农家品种遗传多样性的研究,包括表型遗传多样性和基因遗传多样性;归纳了元阳哈尼梯田原生境保护下生态环境对水稻品种遗传多样性的影响,主要包括地理条件影响和生物因素影响;总结了元阳当地传统知识和文化对元阳哈尼梯田水稻农家品种遗传多样性的影响;探究了原生境保护水稻农家品种的优越性。研究旨在为水稻农家品种及相关农家作物资源的保护工作提供科学依据。
中图分类号:
何柳, 宋英杰, 龙春林. 哈尼梯田水稻农家品种遗传多样性的原生境保护研究进展[J]. 中国农学通报, 2020, 36(10): 87-94.
Liu He, Yingjie Song, Chunlin Long. Genetic Diversity of Rice Landraces in Yuanyang Hani Terraced Rice Fields Under In-situ Conservation: Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(10): 87-94.
性状 | 样品数/个 | 平均值±标准值 | 最小值 | 最大值 | 极差 | 变异系数/% | 参考文献 |
---|---|---|---|---|---|---|---|
播抽历期 | 135 | 146.0±8.094 | 129.50 | 162.00 | 32.50 | 5.50 | [26] |
株高/cm | 135 | 137.8±22.588 | 69.50 | 179.60 | 110.10 | 16.40 | [26] |
分蘖数 | 135 | 5.5±1.219 | 3.30 | 8.90 | 5.60 | 22.00 | [26] |
剑叶长/mm | 135 | 36.4±4.281 | 24.60 | 45.70 | 21.10 | 11.80 | [26] |
剑叶宽/mm | 135 | 1.49±0.176 | 1.10 | 2.00 | 0.90 | 11.80 | [26] |
伸长节间数 | 111 | 4.35±0.55 | 3.13 | 5.75 | 2.62 | 12.62 | [27] |
一次枝梗数 | 111 | 12.42±1.54 | 7.75 | 16.50 | 8.75 | 12.40 | [27] |
二次枝梗数 | 111 | 34.78±5.79 | 20.00 | 50.75 | 30.75 | 16.63 | [27] |
穗长/cm | 135 | 24.7±1.854 | 20.20 | 30.20 | 10.00 | 7.50 | [26] |
穗颈长/cm | 135 | 5.70±5.111 | -5.80 | 15.50 | 21.30 | 89.70 | [26] |
穗下节长 | 135 | 38.9±6.632 | 19.20 | 52.20 | 33.00 | 17.00 | [26] |
每穗总粒数 | 135 | 178.7±34.534 | 99.00 | 252.10 | 153.10 | 19.30 | [26] |
每穗实粒数 | 135 | 132.1±38.332 | 13.90 | 203.50 | 189.60 | 29.00 | [26] |
结实率/% | 135 | 73.5±15.9 | 9.50 | 91.10 | 81.60 | 21.60 | [26] |
千粒重/g | 135 | 24.6±2.439 | 19.70 | 31.60 | 11.90 | 9.90 | [26] |
粒长/mm | 135 | 8.30±0.69 | 6.50 | 9.60 | 3.10 | 8.30 | [26] |
粒宽/mm | 135 | 3.32±0.23 | 2.90 | 3.90 | 0.10 | 7.10 | [26] |
谷粒长宽比 | 135 | 2.52±0.331 | 1.70 | 3.10 | 1.30 | 13.20 | [26] |
粒厚/mm | 135 | 2.21±0.009 | 2.03 | 2.40 | 0.37 | 13.20 | [26] |
落粒性 | 135 | 7.7±1.326 | 3.00 | 9.00 | 6.00 | 17.30 | [26] |
谷粒形状 | 135 | 4.6±1.099 | 1.00 | 7.00 | 6.00 | 23.80 | [26] |
种皮色 | 135 | 1.6±0.637 | 1.00 | 5.00 | 4.00 | 34.70 | [26] |
剑叶角度 | 135 | 1.8±0.962 | 1.00 | 5.90 | 4.90 | 53.50 | [26] |
穗立形状 | 135 | 6.6±1.919 | 1.00 | 9.00 | 8.00 | 29.20 | [26] |
颖色 | 135 | 1.2±0.504 | 1.00 | 4.50 | 3.50 | 40.50 | [26] |
表观直链淀粉含量/% | 111 | 18.23±8.85 | 1.31 | 39.69 | 38.38 | 48.69 | [27] |
胶稠度/mm | 111 | 78.85±24.82 | 30.00 | 128.00 | 98.00 | 32.20 | [27] |
热焓值/(J/g) | 111 | 8.20±1.09 | 5.87 | 11.64 | 5.77 | 13.30 | [27] |
起始温度/℃ | 111 | 69.96±3.32 | 62.30 | 76.80 | 14.50 | 4.73 | [27] |
峰值温度/℃ | 111 | 75.02±2.58 | 66.90 | 81.00 | 14.10 | 3.43 | [27] |
峰值粘度/cP | 111 | 2788.52±639.09 | 1,085.00 | 3,780.00 | 2,695.00 | 22.92 | [27] |
热浆粘度/cP | 111 | 1997.11±603.07 | 683.00 | 2,780.00 | 2,097.00 | 30.20 | [27] |
崩解值/cP | 111 | 791.41±328.58 | 251.00 | 1,945.00 | 1,694.00 | 41.52 | [27] |
冷胶粘度/cP | 111 | 3181.32±1040.62 | 910.00 | 4,319.00 | 3,409.00 | 32.71 | [27] |
消减值/cP | 111 | 1184.22±480.18 | 221.00 | 1,899.00 | 1,678.00 | 40.55 | [27] |
平均值 | 127.46 | — | — | — | — | 23.26 |
性状 | 样品数/个 | 平均值±标准值 | 最小值 | 最大值 | 极差 | 变异系数/% | 参考文献 |
---|---|---|---|---|---|---|---|
播抽历期 | 135 | 146.0±8.094 | 129.50 | 162.00 | 32.50 | 5.50 | [26] |
株高/cm | 135 | 137.8±22.588 | 69.50 | 179.60 | 110.10 | 16.40 | [26] |
分蘖数 | 135 | 5.5±1.219 | 3.30 | 8.90 | 5.60 | 22.00 | [26] |
剑叶长/mm | 135 | 36.4±4.281 | 24.60 | 45.70 | 21.10 | 11.80 | [26] |
剑叶宽/mm | 135 | 1.49±0.176 | 1.10 | 2.00 | 0.90 | 11.80 | [26] |
伸长节间数 | 111 | 4.35±0.55 | 3.13 | 5.75 | 2.62 | 12.62 | [27] |
一次枝梗数 | 111 | 12.42±1.54 | 7.75 | 16.50 | 8.75 | 12.40 | [27] |
二次枝梗数 | 111 | 34.78±5.79 | 20.00 | 50.75 | 30.75 | 16.63 | [27] |
穗长/cm | 135 | 24.7±1.854 | 20.20 | 30.20 | 10.00 | 7.50 | [26] |
穗颈长/cm | 135 | 5.70±5.111 | -5.80 | 15.50 | 21.30 | 89.70 | [26] |
穗下节长 | 135 | 38.9±6.632 | 19.20 | 52.20 | 33.00 | 17.00 | [26] |
每穗总粒数 | 135 | 178.7±34.534 | 99.00 | 252.10 | 153.10 | 19.30 | [26] |
每穗实粒数 | 135 | 132.1±38.332 | 13.90 | 203.50 | 189.60 | 29.00 | [26] |
结实率/% | 135 | 73.5±15.9 | 9.50 | 91.10 | 81.60 | 21.60 | [26] |
千粒重/g | 135 | 24.6±2.439 | 19.70 | 31.60 | 11.90 | 9.90 | [26] |
粒长/mm | 135 | 8.30±0.69 | 6.50 | 9.60 | 3.10 | 8.30 | [26] |
粒宽/mm | 135 | 3.32±0.23 | 2.90 | 3.90 | 0.10 | 7.10 | [26] |
谷粒长宽比 | 135 | 2.52±0.331 | 1.70 | 3.10 | 1.30 | 13.20 | [26] |
粒厚/mm | 135 | 2.21±0.009 | 2.03 | 2.40 | 0.37 | 13.20 | [26] |
落粒性 | 135 | 7.7±1.326 | 3.00 | 9.00 | 6.00 | 17.30 | [26] |
谷粒形状 | 135 | 4.6±1.099 | 1.00 | 7.00 | 6.00 | 23.80 | [26] |
种皮色 | 135 | 1.6±0.637 | 1.00 | 5.00 | 4.00 | 34.70 | [26] |
剑叶角度 | 135 | 1.8±0.962 | 1.00 | 5.90 | 4.90 | 53.50 | [26] |
穗立形状 | 135 | 6.6±1.919 | 1.00 | 9.00 | 8.00 | 29.20 | [26] |
颖色 | 135 | 1.2±0.504 | 1.00 | 4.50 | 3.50 | 40.50 | [26] |
表观直链淀粉含量/% | 111 | 18.23±8.85 | 1.31 | 39.69 | 38.38 | 48.69 | [27] |
胶稠度/mm | 111 | 78.85±24.82 | 30.00 | 128.00 | 98.00 | 32.20 | [27] |
热焓值/(J/g) | 111 | 8.20±1.09 | 5.87 | 11.64 | 5.77 | 13.30 | [27] |
起始温度/℃ | 111 | 69.96±3.32 | 62.30 | 76.80 | 14.50 | 4.73 | [27] |
峰值温度/℃ | 111 | 75.02±2.58 | 66.90 | 81.00 | 14.10 | 3.43 | [27] |
峰值粘度/cP | 111 | 2788.52±639.09 | 1,085.00 | 3,780.00 | 2,695.00 | 22.92 | [27] |
热浆粘度/cP | 111 | 1997.11±603.07 | 683.00 | 2,780.00 | 2,097.00 | 30.20 | [27] |
崩解值/cP | 111 | 791.41±328.58 | 251.00 | 1,945.00 | 1,694.00 | 41.52 | [27] |
冷胶粘度/cP | 111 | 3181.32±1040.62 | 910.00 | 4,319.00 | 3,409.00 | 32.71 | [27] |
消减值/cP | 111 | 1184.22±480.18 | 221.00 | 1,899.00 | 1,678.00 | 40.55 | [27] |
平均值 | 127.46 | — | — | — | — | 23.26 |
品种 | 引物数 | 等位基因数(Na) | 有效等位基因数(Ne) | 预期杂合度(Nei) | 香农指数(I) | 参考文献 |
---|---|---|---|---|---|---|
红脚老粳 | 24 | 3.17 | 1.762 | 0.361 | 0.591 | [32] |
白脚老粳 | 24 | 4.08 | 1.474 | 0.240 | 0.472 | [35] |
月亮谷 | 48 | 2.38 | 1.826 | 0.640 | 0.640 | [24] |
Dalaogeng | 13 | 2.23 | 1.341 | 0.174 | 0.326 | [34] |
Huangnuogu | 13 | 2.15 | 1.291 | 0.187 | 0.333 | [34] |
Yaduogu | 13 | 3.00 | 1.846 | 0.307 | 0.582 | [34] |
Huagu | 13 | 3.54 | 1.342 | 0.207 | 0.445 | [34] |
Lengshuigu | 13 | 3.15 | 1.392 | 0.249 | 0.474 | [34] |
Jiuyuenuo | 13 | 2.46 | 1.187 | 0.144 | 0.281 | [34] |
Xiangnuogu | 13 | 2.38 | 1.378 | 0.185 | 0.342 | [34] |
平均值 | 18.7 | 2.85 | 1.484 | 0.269 | 0.449 |
品种 | 引物数 | 等位基因数(Na) | 有效等位基因数(Ne) | 预期杂合度(Nei) | 香农指数(I) | 参考文献 |
---|---|---|---|---|---|---|
红脚老粳 | 24 | 3.17 | 1.762 | 0.361 | 0.591 | [32] |
白脚老粳 | 24 | 4.08 | 1.474 | 0.240 | 0.472 | [35] |
月亮谷 | 48 | 2.38 | 1.826 | 0.640 | 0.640 | [24] |
Dalaogeng | 13 | 2.23 | 1.341 | 0.174 | 0.326 | [34] |
Huangnuogu | 13 | 2.15 | 1.291 | 0.187 | 0.333 | [34] |
Yaduogu | 13 | 3.00 | 1.846 | 0.307 | 0.582 | [34] |
Huagu | 13 | 3.54 | 1.342 | 0.207 | 0.445 | [34] |
Lengshuigu | 13 | 3.15 | 1.392 | 0.249 | 0.474 | [34] |
Jiuyuenuo | 13 | 2.46 | 1.187 | 0.144 | 0.281 | [34] |
Xiangnuogu | 13 | 2.38 | 1.378 | 0.185 | 0.342 | [34] |
平均值 | 18.7 | 2.85 | 1.484 | 0.269 | 0.449 |
[1] | Jiao Y M, Li X Z, Liang L H, et al.Indigenous ecological knowledge and natural resource management in the cultural landscape of China’s Hani terraces[J]. Ecological Research,2012,27(2):247-263. |
[2] | Adachi S.Agricultural technologies of terraced rice cultivation in the Ailao Mountains, Yunnan, China[J]. Asian and African Area Studies,2006,6:173-196. |
[3] | Jiao Y M, Okuro T, Takeuchi K, et al.Comparative studies on pattern and ecosystem services of the traditional rice agricultural landscapes in east Asia[A]. World Terraced Landscapes: History, Environment, Quality of Life[M]. Springer,2019:225-238. |
[4] | 孙婷,刘涛,靳百慧,等.不同海拔水稻耐冷特性研究[J].云南农业大学学报. 2016(3):387-391. |
[5] | 徐福荣,汤翠凤,余腾琼,等.中国云南元阳哈尼梯田种植的稻作品种多样性[J].生态学报. 2010,30(12):3346-3357. |
[6] | FAO. The state of food insecurity in the world: addressing food insecurity in protracted crises[M]. Rome: Food and Agriculture Organization of the United Nations, 2010:10-15. |
[7] | 向吉清. 云南红河县浪堤乡哈尼奕车人红米的环境人类学研究[D].昆明:云南大学,2012. |
[8] | Tonapha P, Sansanee J, Chiang Y C, et al.Genetic structure and isolation by distance in a landrace of Thai rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(33):13880-13885. |
[9] | Qi Y W, Zhang D L, Zhang H L, et al.Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years[J]. Chinese Science Bulletin,2006,51(6):681-688. |
[10] | Cohen J I, Williams J T, Plucknett D L, et al.Ex-situ conservation of plant genetic resources: global development and environmental concerns[J]. Science,1991,253:866-872. |
[11] | Jackson M T.Conservation of rice genetic resources: the role of the international rice genebank at IRRI[J]. Plant Molecular Biology. 1997, 35(1-2): 61-67. |
[12] | Zeuli P S, Sergio L, Perrino P.Changes in the genetic structure of wheat germplasm accessions during seed rejuvenation[J]. Plant Breeding,2010,114(3):193-198. |
[13] | Sun J C, Cao G L, Ma J, et al.Comparative genetic structure within single-origin pairs of rice (Oryza sativa L.) landraces from in-situ and ex-situ conservation programs in Yunnan of China using microsatellite markers[J]. Genetic Resources and Crop Evolution,2012,59(8):1611-1623. |
[14] | Xu F R, A X X, Zhang F F, et al. On-farm conservation of 12 cereal crops among 15 ethnic groups in Yunnan (PR China)[J]. Genetic Resources and Crop Evolution,2014,61(2):423-434. |
[15] | Pei S J, Hamilton A C, Yang L X, et al.Conservation and development through medicinal plants: a case study from Ludian (Northwest Yunnan, China) and presentation of a general model[J]. Biodiversity and Conservation,2010,19(9):2619-2636. |
[16] | Gao Y Y, Gong W F, Li R R, et al.Genetic diversity analysis of Tibetan turnip (Brassica rapa L. ssp. rapifera Matzg) revealed by morphological, physiological, and molecular marker[J]. Genetic Resources and Crop Evolution,2019:1-15. |
[17] | Yildirim E, Yildirim N, Ercisli S, et al.Genetic relationships among turnip (Brassica rapa var. rapa) genotypes[J]. Genetics and Molecular Research(GRM),2010,9(2):987. |
[18] | 张媛媛. 中国不同地理来源的籼稻地方品种遗传多样性分析[D].北京:中国农业科学院,2005. |
[19] | Snodgrass R E.Principles of insect morphology[M].New York: McGraw-Hill,1935:223-225. |
[20] | Gepts P.The use of molecular and biochemical markers in crop evolution studies[J]. Evolutionary Biology,1993,27(1):51-94. |
[21] | Bretting P K, Widrlechner M P.Genetic markers and plant genetic resource management[M]. Plant Breeding Reviews, Volume 13, John Wiley & Sons, Inc., 2010:56-63. |
[22] | Gilliland T J, Coll R, Calsyn E, et al.Estimating genetic conformity between related ryegrass (Lolium) varieties. 1. Morphology and biochemical characterisation[J]. Molecular Breeding,2000,6(6):569-580. |
[23] | Karp A, Kresovich S, Bhat K V, et al.Molecular tools in plant genetic resources conservation: a guide to the technologies[M]. International Plant Genetic Resources Institute,1997:102-135. |
[24] | 董超,徐福荣,杨文毅,等.云南元阳哈尼梯田水稻地方品种月亮谷的遗传变异分析[J].中国水稻科学,2013,27(2):137-144. |
[25] | He X H, Sun Y, Gao D, et al.Comparison of agronomic traits between rice landraces and modern varieties at different altitudes in the paddy fields of Yuanyang terrace, Yunnan province[J]. Journal of Resources and Ecology,2011,2(1):46-50. |
[26] | 徐福荣,张恩来,董超,等.云南元阳哈尼梯田地方稻种的主要农艺性状鉴定评价[J].植物遗传资源学报,2010,11(4):413-417. |
[27] | 刘承晨. 云南元阳哈尼梯田现有栽培水稻遗传多样性分析[D].扬州:扬州大学,2015. |
[28] | Hartings H, Berardo N, Mazzinelli G F, et al.Assessment of genetic diversity and relationships among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling[J]. Theoretical and Applied Genetics,2008,117(6):831-842. |
[29] | Varshney R K, Andreas G, Sorrells M E.Genic microsatellite markers in plants: features and applications[J]. Trends in Biotechnology,2005,23(1):48-55. |
[30] | 王敬国. 东北亚地区粳稻遗传多样性及主要株型性状与SSR标记的关联分析[D].哈尔滨:东北林业大学,2014. |
[31] | 翟婉婉,李雪萍,徐返,等.云南水稻地方品种月亮谷的群体多样性分析[J].植物遗传资源学报,2016,17(3):423-432. |
[32] | 高东,杨木青,李锐,等.元阳3个长期连续栽培水稻地方品种内部遗传异质性分析[J].植物遗传资源学报,2012,13(3):484-487. |
[33] | 朱有勇. 元阳梯田红米稻作文化——一项亟待研究和保护的农业科学文化遗产[J].学术探索,2009(3):14-15. |
[34] | Wang Y J, Wang Y L, Sun X D, et al.Influence of ethnic traditional cultures on genetic diversity of rice landraces under on-farm conservation in southwest China[J]. Journal of Ethnobiology and Ethnomedicine,2016,12(1):51. |
[35] | 高东,王云月,何霞红,等.元阳白脚老粳水稻地方品种内遗传异质性及意义[J].分子植物育种,2009,7(2):283-291. |
[36] | Sun Y H, Zhou H J, Zhang L Y, et al.Adapting to droughts in Yuanyang terrace of SW China: insight from; disaster risk reduction[J]. Mitigation and Adaptation Strategies for Global Change,2013,18(6):759-771. |
[37] | Li F B, Lu G D, Zhou X Y, et al.Elevation and land use types have significant impacts on spatial variability of soil organic matter content in Hani terraced field of Yuanyang County, China[J]. Rice Science,2015,22(1):27-34. |
[38] | 林菁菁,李进斌,刘林,等.云南元阳哈尼梯田稻瘟病菌遗传多样性分析[J].植物病理学报,2009,39(1):43-51. |
[39] | Yao M, Cui B.The vertical characteristics of ecosystem of Hani’s terrace paddy field in Yunnan, China[J]. Acta Ecologica Sinica,2006,26:2115-2124. |
[40] | Barthlott W, Mutke J, Rafiqpoor M D, et al.Global centers of vascular plant diversity[J]. Nova Acta Leopoldina,2005,92:61-83. |
[41] | 赵娟,刘涛,潘磊,等.元阳梯田地方水稻品种根部内生菌及根际微生物的分离与鉴定[J].应用生态学报,2015,26(12):3737-3745. |
[42] | Johri B N, Sharma A, Virdi J S.Rhizobacterial diversity in India and its influence on soil and plant health[J]. Advances in Biochemical Engineering Biotechnology,2003,84:49. |
[43] | 杨韶松,陈斌,李正跃,等.云南元阳梯田稻作传统农业生态系统中鞘翅目昆虫多样性研究[J].西南农业学报,2009,22(4):942-945. |
[44] | Cui D, Li J M, Tang C F, et al.Diachronic analysis of genetic diversity in rice landraces under on-farm conservation in Yunnan, China[J]. Theoretical and Applied Genetics,2016,129(1):155-168. |
[45] | Tahtamouni M E, Khresat S, Lucero M, et al.Diversity of endophytes across the soil-plant continuum for Atriplex spp. in arid environments[J]. Journal of Arid Land,2016,8:241-253. |
[46] | 应沛艳. 生态风险与哈尼族地方性知识[D].昆明:云南大学,2017. |
[47] | 王永锋. 云南哈尼族鱼塘的生态人类学分析[D].昆明:云南大学,2013. |
[48] | 冯金朝,石莎,何松杰.云南哈尼梯田生态系统研究[J].中央民族大学学报:自然科学版,2008,17(S1):146-152. |
[49] | Zhu Y, Chen H, Fan J, et al.Genetic diversity and disease control in rice[J]. Nature,2000,406:718-722. |
[50] | 董树斌,卢宝荣,王云月,等.云南水稻传统品种内的遗传多样性及其维持机制初探[J].云南农业大学学报:自然科学,2010,25(1):1-9. |
[51] | Lee S, Park H, Kim B, et al.An unexpected genetic diversity pattern and a complex demographic history of a rare medicinal herb, Chinese asparagus (Asparagus cochinchinensis) in Korea[J]. Scientific Reports,2019,9(1):9757. |
[52] | Pfeiffer J M, Dun S, Mulawarman B, et al.Biocultural diversity in traditional rice-based agroecosystems: indigenous research and conservation of mavo (Oryza sativa L.) upland rice landraces of eastern Indonesia[J]. Environment Development and Sustainability,2006,8(4):609-625. |
[53] | Esquinas-Alcázar J.Protecting crop genetic diversity for food security: political, ethical and technical challenges[J]. Nature Reviews Genetics,2005,6(12):946-953. |
[54] | Soleri D, Smith S.Morphological and phenological comparisons of two Hopi maize varieties conserved in-situ and ex-situ[J]. Economic Botany,1995,49(1):56-77. |
[55] | Bisht I, Mehta P, Bhandari D.Traditional crop diversity and its conservation on-farm for sustainable agricultural production in Kumaon Himalaya of uttaranchal state: a case study[J]. Genetic Resources and Crop Evolution,2007,54(2):345-357. |
[56] | Long C L.Can commercialization save rare landraces in small ethnic communities?[A]. Chinese Academy of Agricultural Sciences, Crop Science Society of China. 7th International Crop Science Congress[C].2016:1. |
[57] | Yang J B, Wang Y C, Wang D, et al.Application of traditional knowledge of Hani people in biodiversity conservation[J]. Sustainability,2018,10(12):4555. |
[58] | 韩龙植,魏兴华.水稻种质资源描述规范和数据标准[M].北京:中国农业出版社,2006:65-81. |
[1] | 刘小英, 吴碧君, 张游南, 黄飞龙, 刘国强. 基于ISSR标记的龙眼种质资源遗传多样性及亲缘关系分析[J]. 中国农学通报, 2022, 38(31): 60-65. |
[2] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[3] | 孙志广, 潘根, 陈庭木, 李景芳, 赵利君, 迟铭, 徐波, 邢运高, 刘金波, 刘晓敏, 葛高宁, 徐锦涛, 王宝祥, 徐大勇. 基于SNP标记的穞稻与栽培稻的遗传多样性分析及萌发耐淹性评价[J]. 中国农学通报, 2022, 38(30): 6-13. |
[4] | 张佳琦, 郭宗珊, 刘长华, 李荣田. 黑龙江省水稻品种的遗传多样性[J]. 中国农学通报, 2022, 38(17): 1-9. |
[5] | 彭婵, 张新叶, 刘宗坤, 马林江, 陈慧玲. 石斛属植物SSR分子标记的研究进展[J]. 中国农学通报, 2022, 38(13): 36-40. |
[6] | 汪乔, 王祥锋, 郭玉峰, 王丽. 肺形侧耳菌株的遗传差异分析与农艺性状评价[J]. 中国农学通报, 2022, 38(10): 46-52. |
[7] | 向小华, 李媛, 张兴伟, 刘国祥, 杨菁, 赵文涛, 闻刚, 邵雨, 范静苑, 吕洪坤. 海南新收集烟草种质资源的鉴定与遗传多样性分析[J]. 中国农学通报, 2021, 37(7): 59-67. |
[8] | 张桂宁, 方弟安, 薛向平, 张敏莹, 冯晓婷, 杨雪军. 基于细胞色素B(Cyt b)基因对翘嘴鲌不同群体遗传多样性的分析[J]. 中国农学通报, 2021, 37(23): 118-124. |
[9] | 刘小英, 黄飞龙, 刘国强, 张游南. 枇杷ISSR分子标记的研究进展[J]. 中国农学通报, 2021, 37(21): 106-110. |
[10] | 徐明, 汪琼, 李冬玲, 郑玉红, 徐增莱. 基于ISSR标记的5个蓼蓝居群遗传多样性分析[J]. 中国农学通报, 2021, 37(21): 134-139. |
[11] | 李大命, 唐晟凯, 刘燕山, 谷先坤, 殷稼雯, 蒋琦辰, 张彤晴, 潘建林. 基于Cyt b基因的江苏省湖鲚种群遗传多样性和遗传结构分析[J]. 中国农学通报, 2021, 37(20): 144-151. |
[12] | 陈罡, 于世河, 姜义仁, 卜鹏图, 郑颖, 冯健. 基于高通量测序方法的蒙古栎SSR标记开发[J]. 中国农学通报, 2021, 37(16): 13-17. |
[13] | 杨潇湘, 伍文宪, 黄小琴, 张蕾, 杜磊, 刘勇. 四川省丁香假单胞猕猴桃致病变种的遗传多样性分析[J]. 中国农学通报, 2020, 36(9): 132-137. |
[14] | 张彦波, 尹国, 路正营, 孙璐, 李世云, 杨玉枫. 87份中熟棉种质资源亲缘关系和遗传多样性研究[J]. 中国农学通报, 2020, 36(6): 82-88. |
[15] | 胡燕秋, 冯国军, 杨晓旭, 刘畅, 刘大军, 闫志山. 菜豆种质资源的植物凝集素含量测定及变化分析[J]. 中国农学通报, 2020, 36(5): 18-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||