中国农学通报 ›› 2020, Vol. 36 ›› Issue (32): 39-48.doi: 10.11924/j.issn.1000-6850.casb20191100883
邹锋康1(), 贾海伦1,2,3, 丁广洲1,2,3(), 陈丽1,2,3
收稿日期:
2019-11-27
修回日期:
2020-01-25
出版日期:
2020-11-15
发布日期:
2020-11-19
通讯作者:
丁广洲
作者简介:
邹锋康,男,1992年出生,陕西渭南人,硕士研究生,研究方向:植物抗性基因。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学农作物研究院,Tel:0451-86609312,E-mail: 基金资助:
Zou Fengkang1(), Jia Hailun1,2,3, Ding Guangzhou1,2,3(), Chen Li1,2,3
Received:
2019-11-27
Revised:
2020-01-25
Online:
2020-11-15
Published:
2020-11-19
Contact:
Ding Guangzhou
摘要:
磷脂酰肌醇转运蛋白(PITPs)广泛存在于真核生物细胞中,能够在体外膜脂质双层之间调控磷脂酰肌醇(PtdIns)或者磷脂酰胆碱(PtdCho)单体的独立转运。参与磷酸肌醇代谢、膜运输、极性生长、信号转导、逆境胁迫、胞浆运动和细胞周期调节等多种重要的生命过程,在植物的逆境响应以及发育调节中具有重要的作用。为了研究甜菜磷脂酰肌醇转运蛋白基因及其在低温胁迫下的表达情况。本研究以甜菜基因组数据库中一条预测的磷脂酰肌醇转运蛋白基因CRS1为模板,用基因克隆的方法得到一条全长765 bp,开放阅读框596 bp,编码198个氨基酸的甜菜SEC14基因,命名为SbSEC14。理化性质分析表明,该蛋白质为不稳定亲水蛋白;蛋白质二、三级结构分析表明,该蛋白质α-螺旋所占的比例最高,为47.47%,β-转角所占比例最低,为5.56%;蛋白质保守结构分析表明,该蛋白质有典型的SEC14结构域;蛋白质系统进化树分析表明,甜菜SbSEC14基因与菠菜、藜麦的磷脂酰肌醇运转蛋白基因亲缘关系最近;实时荧光定量结果表明,SbSEC14基因在甜菜中组成型表达,在甜菜叶中的表达量最高,在甜菜根中的表达量最低,在叶中表达量约为根中的2.5倍。甜菜幼苗4℃处理0、2、6、12、24 h,该基因在植株处理0~2 h时表达量呈上升趋势,在植株处理2~6 h时表达量呈下降趋势,在植株处理6~24 h时表达量趋于平稳状态。因此,预测该基因与甜菜抗低温胁迫相关。
中图分类号:
邹锋康, 贾海伦, 丁广洲, 陈丽. 甜菜磷脂酰肌醇转运蛋白基因SbSEC14的克隆及低温胁迫下的表达分析[J]. 中国农学通报, 2020, 36(32): 39-48.
Zou Fengkang, Jia Hailun, Ding Guangzhou, Chen Li. Phosphatidylinositol Transporters Gene SbSEC14 C in Sugarbeet: Cloning and Expression Analysis Under Low Temperature Stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 39-48.
引物 | 引物序列(5'-3') | 用途 |
---|---|---|
Sbsec14 | R:GCTAGTTTTGGAAGTGAAGGAAAG | 基因克隆 |
F:ATGCTCTCAAGTCATAGATCACCT | ||
GAPDH | R:GTTGGAACACGGAA AGCC | 内参基因 |
F:TGGAGAGGTGGAAGG | ||
qSbsec14 | R:GAGGAAACCGTGCCTGCCATCT | 荧光定量 |
F:TATTATCCAGCGAGGGGCTACAA |
引物 | 引物序列(5'-3') | 用途 |
---|---|---|
Sbsec14 | R:GCTAGTTTTGGAAGTGAAGGAAAG | 基因克隆 |
F:ATGCTCTCAAGTCATAGATCACCT | ||
GAPDH | R:GTTGGAACACGGAA AGCC | 内参基因 |
F:TGGAGAGGTGGAAGG | ||
qSbsec14 | R:GAGGAAACCGTGCCTGCCATCT | 荧光定量 |
F:TATTATCCAGCGAGGGGCTACAA |
[1] |
Brown F D, Rozelle A L, Yin H L, et al. Phosphatidylinosito 4,5-bisphosphate and Arf6-regulated membrane traffic[J]. J Cell Biol. 2001,154:1007-1017.
URL pmid: 11535619 |
[2] | Chung J K, Sekiya F, Kang H S, et al. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinosito 4,5-bisphosphate[J]. J BiolChem, 1997,272:15980-15985. |
[3] |
McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics[J]. Nature, 2005,438:605-611.
URL pmid: 16319880 |
[4] | Hilgemann D W, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channel and transporters[J]. Science, STKE, 2001: re19. |
[5] |
Berridge M J, Irvine R F. Inositol trisphosphate, a novel second messenger in cellular signal transduction[J]. Nature, 1984,312:315-321.
doi: 10.1038/312315a0 URL pmid: 6095092 |
[6] |
Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion[J]. Nature, 1984,308:693-698.
doi: 10.1038/308693a0 URL pmid: 6232463 |
[7] |
Odom A R, Stahlberg A, Wente S R, et al. A role for nuclear inosito 1,4,5- trisphosphate kinase in transcriptional control[J]. Science, 2000,287:2026-2029.
URL pmid: 10720331 |
[8] | Alcázar-Román A R, Elizabeth J, Tran E J, et al. Inositol hexakisphosphate and Gle1activate the DEAD-box protein Dbp5 for nuclear mRNA export[J]. Nat Cell Biol, 2006,8:711-716. |
[9] | Lee Y S, Mulugu S, York J D, et al. Regulation of a Cyclin/CDK/CDK inhibitor complex by inositol pyrophosphates[J]. Science, 2007,316:109-112. |
[10] |
Laha D, Johnen P, Azevedo C, et al. VIH2 regulates the synjournal of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in[J]. Plant Cell, 2015,27:1082-1097.
doi: 10.1105/tpc.114.135160 URL pmid: 25901085 |
[11] |
Macbeth M R, Schubert H L, Vandemark A P, et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing[J]. Science, 2005,309:1534-1539.
doi: 10.1126/science.1113150 URL pmid: 16141067 |
[12] | Tan X, Calderon-Villalobos L I A, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007,446:640-645. |
[13] | Michell R H. Inositol derivatives: evolution and functions[J]. Nat Rev Mol Biol, 2008,9:151-161. |
[14] |
Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation[J]. Physiol Rev, 2013,93:1019-1137.
doi: 10.1152/physrev.00028.2012 URL pmid: 23899561 |
[15] | Bankaitis V A, Vincent P, Merkulova M, et al. Phospha-tidylinositol transfer proteins and functional specifica-tion of lipid signaling pools[J]. Advances in EnzymeRegulation, 2007,47:27-40. |
[16] |
Giansanti M G, Bonaccorsi S, Kurek R, et al. The classI PITP giotto is required for drosophila cytokinesis[J]. Current Biology, 2006,16(2):195-201.
doi: 10.1016/j.cub.2005.12.011 URL pmid: 16431372 |
[17] | Li X, Xie Z, Bankaitis V A. Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast Biochimica et Biophysica[J]. Acta, 2000,1486:55-71. |
[18] |
Bohme K, Li Y, Charlot F, et al. The Arabidopsis COW1, gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth[J]. Plant Journal, 2010,40(5):686-698.
doi: 10.1111/j.1365-313X.2004.02245.x URL pmid: 15546352 |
[19] | Thomas G M, Pinxteren J A. Phosphafidylinositol Transfer Proteins: One Big Happy Family or Strangers with the Same Name?[J]. Molecular Cell Biology Research Communications, 2000,4:1-9. |
[20] | Hamilton B A, Smith D J, Mueller K L. The vibrator mutation causes neurogeneration via reduced expression of PITPa: Positional complementation cloning and extragenic suppression[J].Neuron, 1997, 18: 71l-722. |
[21] | 毛花英, 刘峰, 苏炜华, 等. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018,44(6):824-835. |
[22] | Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, et al. Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein[J]. Plant Science, 2016,246:98-111. |
[23] | 苏世超, 唐益苗, 徐磊, 等. 普通小麦TaSEC14p-5基因的克隆及表达分析[J]. 农业生物技术学报, 2016,24(8):1129-1137. |
[24] |
Wang X, Shan X, Xue C, et al. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.)[J]. Plant Cell Reports, 2016,35(8):1671-1686.
doi: 10.1007/s00299-016-1980-4 URL pmid: 27061906 |
[25] |
Kiba A, Nakano M, Ohnishi K, et al. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana[J]. Plant Physiology & Biochemistry, 2018,125.
doi: 10.1016/j.plaphy.2018.01.028 URL pmid: 29427891 |
[26] |
Kiba A, Galis I, Hojo Y, et al. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana[J]. Plos One, 2014,9(5):e98150.
URL pmid: 24845602 |
[27] |
Kiba A, Nakano M, VincentPope P, et al. A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity[J]. Journal of Plant Physiology, 2012,169(10):1017-1022.
doi: 10.1016/j.jplph.2012.04.002 URL pmid: 22542247 |
[28] | Gelli M, Duo Y, Konda A R, et al. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling[J]. Bmc Genomics, 2014,15(1):179. |
[29] |
Huang J, Kim C M, Xuan Y H, et al. OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice[J]. Plant Molecular Biology, 2013,82(1-2):39-50.
doi: 10.1007/s11103-013-0033-4 URL pmid: 23456248 |
[30] | Mo P L. Molecular biology of two Sec14-like phosphatidylinositol transfer proteins that specifically expressed in flowers of Arabidopsis thaliana[D]. Xiamen: Xiamen University, 2006. |
[31] |
Mo P, Zhu Y, Liu X, et al. Identification of two phosphatidylinositol/phosphatidylcholine transfer protein genes that are predominately transcribed in the flowers of Arabidopsis thaliana.[J]. Journal of Plant Physiology, 2007,164(4):478-486.
URL pmid: 16697077 |
[32] |
Peterman T K, Sequeira A S, Samia J A, et al. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo)[J]. Journal of Plant Physiology, 2006,163(11):1150-1158.
doi: 10.1016/j.jplph.2006.01.009 URL pmid: 16542754 |
[33] |
Vincent P, Chua M, Nogue F, et al. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs[J]. Journal of Cell Biology, 2005,168(5):801-812.
URL pmid: 15728190 |
[34] |
Kapranov P, Routt S M, Bankaitis V A, et al. Nodule-Specific Regulation of Phosphatidylinositol Transfer Protein Expression in Lotus japonicus[J]. Plant Cell, 2001,13(6):1369-1382.
doi: 10.1105/tpc.13.6.1369 URL pmid: 11402166 |
[35] |
Saito K, Tautz L, Mustelin T. The lipid-binding SEC14 domain[J]. Biochimica et Biophysica Acta, 2007,1771(6):719-726.
doi: 10.1016/j.bbalip.2007.02.010 URL pmid: 17428729 |
[36] |
Kataya A R, Schei E, LilloC. Towards understandingperoxisomal phosphoregulation in Arabidopsis thaliana[J]. 2016, Planta, 243(3):699-717.
URL pmid: 26649560 |
[37] | Margaret M R, Brenda R S, Scott E P, et al. Conforma tional dynamics of the major yeast phosphatidylinositol transfer protein Sec14p: Insight into the mechanisms of phospholipid exchange and diseases of Sec14p-like protein deficiencies[J]. Molecular Biology of the Cell, 2007,18(5):928-1942. |
[38] | Davison J M, Bankaitis V A, Ghosh R. Devising powerful genetics,biochemical and structural tools in the functional analysis of phosphatidylinositol transfer proteins (PITPs) across diverse species[J]. MethodsCell Biol, 2012,108:249-302. |
[39] |
Bankaitis V A, Ile K E, Nile A H, et al. Thoughts on Sec14-like nanoreactors and phosphoinositide signaling[J]. Adv. Biol. Regul., 2012,52:115-121.
doi: 10.1016/j.jbior.2011.11.001 URL pmid: 22776890 |
[40] |
Marzia O, Cristina V, Fabiola B, et al. Identification of a novel mouse Dbl proto- oncogene splice variant: Evi dence that SEC14 domain is involved in GEF activity regulation[J]. Gene, 2014,537(2):220-229.
doi: 10.1016/j.gene.2013.12.064 URL pmid: 24412292 |
[41] |
de Campos K F, Marília S G. The regulation of cell polarity by lipid transfer proteins of the SEC14 family[J]. Current Opinion in Plant Biology, 2017,40:158-168.
doi: 10.1016/j.pbi.2017.09.007 URL pmid: 29017091 |
[1] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[2] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[3] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[4] | 王琳玉, 蒋依辰, 于清洋, 吴则东, 邳植. 甜菜组蛋白去乙酰化酶(HDACs)基因家族鉴定及功能预测[J]. 中国农学通报, 2022, 38(8): 9-16. |
[5] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[6] | 刘晓航, 马树庆, 赵晶, 全虎杰, 邓奎才, 柴庆荣. 东北粳稻产量对孕穗期不同时段低温的反应[J]. 中国农学通报, 2022, 38(7): 91-98. |
[7] | 张洪芬, 杨丽杰, 赵玉娟, 张峰. 陇东2020年“强凉夏”气候特征及对农业影响分析[J]. 中国农学通报, 2022, 38(5): 117-123. |
[8] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
[9] | 刘镎, 胡华兵, 王荣华, 刘小越, 刘朝阳, 刘晓晗, 王茂芊. 甲醇老化处理对甜菜种子发芽的影响[J]. 中国农学通报, 2022, 38(33): 28-33. |
[10] | 杨晓旭, 李梦娣, 刘大军, 冯国军, 刘畅. 外源褪黑素对低温胁迫下菜豆种子萌发及抗性的影响[J]. 中国农学通报, 2022, 38(33): 34-38. |
[11] | 王佳琦, 张子萱, 刘乃新. 外源硒处理条件下红甜菜苗期矿物质积累特性分析[J]. 中国农学通报, 2022, 38(32): 1-5. |
[12] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[13] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[14] | 石杨, 尹希龙, 李王胜, 兴旺. PEG模拟干旱胁迫对耐旱型与干旱敏感型甜菜种质形态指标的影响[J]. 中国农学通报, 2022, 38(29): 45-51. |
[15] | 王因花, 孔雨光, 李庆华, 吴德军, 燕丽萍, 许涛, 鲁仪增, 翟国锋. 紫椴种子萌发特性及休眠解除方法研究[J]. 中国农学通报, 2022, 38(29): 80-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||