中国农学通报 ›› 2021, Vol. 37 ›› Issue (26): 40-49.doi: 10.11924/j.issn.1000-6850.casb2020-0757
弭宝彬1(), 刘碧琼2, 戴雄泽1, 肖伟1, 张竹青1, 周火强1(
), 汪端华1(
)
收稿日期:
2020-12-07
修回日期:
2021-03-05
出版日期:
2021-09-15
发布日期:
2021-09-30
通讯作者:
周火强,汪端华
作者简介:
弭宝彬,男,1987年出生,山东德州人,助理研究员,博士,主要从事蔬菜重金属安全性评价方面的研究。通信地址:410125 湖南省长沙市芙蓉区远大二路892号,Tel:0731-84697820,E-mail: 基金资助:
Mi Baobin1(), Liu Biqiong2, Dai Xiongze1, Xiao Wei1, Zhang Zhuqing1, Zhou Huoqiang1(
), Wang Duanhua1(
)
Received:
2020-12-07
Revised:
2021-03-05
Online:
2021-09-15
Published:
2021-09-30
Contact:
Zhou Huoqiang,Wang Duanhua
摘要:
探究不同基因型芥菜对镉(Cd)、砷(As)、铅(Pb)、汞(Hg)和铬(Cr) 5种重金属的累积差异性,为芥菜在重金属复合污染地区生产的安全性提供指导。通过盆栽试验研究9种不同基因型芥菜对5种重金属复合污染的响应差异,并结合重金属富集系数和转运系数以及单因子污染指数法、内梅罗综合污染指数法综合评价芥菜在重金属污染区的生产安全性。结果表明:芥菜具有较强的茎/叶重金属转运能力,重金属主要累积在芥菜根及叶中。芥菜不同部位重金属Cd的单项污染指数普遍较高且存在较大的品种差异。Pb、As、Hg和Cr污染指数呈现趋势类似,品种及不同部位间差异不明显。供试品种中‘五四青丕蓝’、‘脆嫩儿菜’、‘特大棒菜’、‘抗热四季甜竹芥’为较好的重金属低累积芥菜品种。芥菜对重金属的累积有基因型差异和重金属种类差异,通过筛选不同基因型芥菜可以获得生产上较为安全的品种。
中图分类号:
弭宝彬, 刘碧琼, 戴雄泽, 肖伟, 张竹青, 周火强, 汪端华. 不同基因型芥菜对5种重金属累积差异性研究[J]. 中国农学通报, 2021, 37(26): 40-49.
Mi Baobin, Liu Biqiong, Dai Xiongze, Xiao Wei, Zhang Zhuqing, Zhou Huoqiang, Wang Duanhua. The Accumulation of Five Heavy Metals in Different Genotypes of Brassica juncea[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 40-49.
品名 | 类型 | 编号 | 品名 | 类型 | 编号 | 品名 | 类型 | 编号 |
---|---|---|---|---|---|---|---|---|
五四青丕蓝 | 根芥 | J1 | 特大棒菜 | 茎芥 | J4 | 大头菜 | 榨菜 | J7 |
细叶雪里蕻 | 叶芥 | J2 | 抗热四季甜竹芥 | 茎芥 | J5 | 三胞心青菜 | 叶芥 | J8 |
脆嫩儿菜 | 茎芥 | J3 | 香港白花柳叶芥兰 | 叶芥 | J6 | 佳园菊花菜 | 叶芥 | J9 |
品名 | 类型 | 编号 | 品名 | 类型 | 编号 | 品名 | 类型 | 编号 |
---|---|---|---|---|---|---|---|---|
五四青丕蓝 | 根芥 | J1 | 特大棒菜 | 茎芥 | J4 | 大头菜 | 榨菜 | J7 |
细叶雪里蕻 | 叶芥 | J2 | 抗热四季甜竹芥 | 茎芥 | J5 | 三胞心青菜 | 叶芥 | J8 |
脆嫩儿菜 | 茎芥 | J3 | 香港白花柳叶芥兰 | 叶芥 | J6 | 佳园菊花菜 | 叶芥 | J9 |
组织部位 | 镉Cd | 铅Pb | 铬Cr | 汞Hg | 砷As |
---|---|---|---|---|---|
芥菜根 | 0.05 | 0.10 | 0.50 | 0.01 | 0.50 |
芥菜茎 | 0.10 | 0.10 | 0.50 | 0.01 | 0.50 |
芥菜叶 | 0.20 | 0.30 | 0.50 | 0.01 | 0.50 |
组织部位 | 镉Cd | 铅Pb | 铬Cr | 汞Hg | 砷As |
---|---|---|---|---|---|
芥菜根 | 0.05 | 0.10 | 0.50 | 0.01 | 0.50 |
芥菜茎 | 0.10 | 0.10 | 0.50 | 0.01 | 0.50 |
芥菜叶 | 0.20 | 0.30 | 0.50 | 0.01 | 0.50 |
部位 | 指标 | Cd | Cr | Hg | Pb | As |
---|---|---|---|---|---|---|
芥菜根 | 平均值/(mg/kg) | 27.89 | 0.57 | 0.40 | 5.63 | 0.89 |
最大值/(mg/kg) | 134.99 | 1.15 | 1.29 | 12.44 | 2.51 | |
最小值/(mg/kg) | 3.27 | 0.09 | 0.06 | 1.05 | 0.11 | |
标准差/% | 43.64 | 0.39 | 0.37 | 4.69 | 0.86 | |
变异系数Cv/% | 156.51 | 68.46 | 92.33 | 83.32 | 96.76 | |
超标率/% | 100.00 | 22.22 | 11.11 | 100.00 | 33.33 | |
芥菜茎 | 平均值/(mg/kg) | 9.48 | 0.08 | 0.18 | 0.51 | 0.08 |
最大值/(mg/kg) | 60.14 | 0.19 | 0.43 | 1.03 | 0.37 | |
最小值/(mg/kg) | 0.78 | 0.03 | 0.08 | 0.17 | 0.00 | |
标准差/% | 19.13 | 0.07 | 0.11 | 0.26 | 0.11 | |
变异系数Cv/% | 201.93 | 78.08 | 59.41 | 51.80 | 136.85 | |
超标率/% | 88.89 | 0.00 | 0.00 | 11.11 | 0.00 | |
芥菜叶 | 平均值/(mg/kg) | 6.97 | 0.31 | 0.42 | 1.34 | 0.27 |
最大值/(mg/kg) | 33.75 | 0.76 | 1.27 | 3.81 | 1.13 | |
最小值/(mg/kg) | 0.82 | 0.06 | 0.14 | 0.40 | 0.00 | |
标准差/% | 10.91 | 0.22 | 0.35 | 1.15 | 0.33 | |
变异系数Cv/% | 156.51 | 69.43 | 83.14 | 86.04 | 123.88 | |
超标率/% | 77.78 | 0.00 | 11.11 | 33.33 | 11.11 | |
土壤浓度 | 背景值/(mg/kg) | 3.48 | 63.90 | 0.26 | 131.70 | 79.00 |
标准值/(mg/kg) | 0.25 | 120.00 | 0.20 | 50.00 | 35.00 |
部位 | 指标 | Cd | Cr | Hg | Pb | As |
---|---|---|---|---|---|---|
芥菜根 | 平均值/(mg/kg) | 27.89 | 0.57 | 0.40 | 5.63 | 0.89 |
最大值/(mg/kg) | 134.99 | 1.15 | 1.29 | 12.44 | 2.51 | |
最小值/(mg/kg) | 3.27 | 0.09 | 0.06 | 1.05 | 0.11 | |
标准差/% | 43.64 | 0.39 | 0.37 | 4.69 | 0.86 | |
变异系数Cv/% | 156.51 | 68.46 | 92.33 | 83.32 | 96.76 | |
超标率/% | 100.00 | 22.22 | 11.11 | 100.00 | 33.33 | |
芥菜茎 | 平均值/(mg/kg) | 9.48 | 0.08 | 0.18 | 0.51 | 0.08 |
最大值/(mg/kg) | 60.14 | 0.19 | 0.43 | 1.03 | 0.37 | |
最小值/(mg/kg) | 0.78 | 0.03 | 0.08 | 0.17 | 0.00 | |
标准差/% | 19.13 | 0.07 | 0.11 | 0.26 | 0.11 | |
变异系数Cv/% | 201.93 | 78.08 | 59.41 | 51.80 | 136.85 | |
超标率/% | 88.89 | 0.00 | 0.00 | 11.11 | 0.00 | |
芥菜叶 | 平均值/(mg/kg) | 6.97 | 0.31 | 0.42 | 1.34 | 0.27 |
最大值/(mg/kg) | 33.75 | 0.76 | 1.27 | 3.81 | 1.13 | |
最小值/(mg/kg) | 0.82 | 0.06 | 0.14 | 0.40 | 0.00 | |
标准差/% | 10.91 | 0.22 | 0.35 | 1.15 | 0.33 | |
变异系数Cv/% | 156.51 | 69.43 | 83.14 | 86.04 | 123.88 | |
超标率/% | 77.78 | 0.00 | 11.11 | 33.33 | 11.11 | |
土壤浓度 | 背景值/(mg/kg) | 3.48 | 63.90 | 0.26 | 131.70 | 79.00 |
标准值/(mg/kg) | 0.25 | 120.00 | 0.20 | 50.00 | 35.00 |
污染等级 | 安全(<0.7) | 警戒级(0.7~1.0) | 轻度污染(1.0~2.0) | 中度污染(2.0~3.0) | 重度污染(>3.0) |
---|---|---|---|---|---|
芥菜根 | 0.00 | 0.00 | 0.00 | 22.22 | 77.78 |
芥菜茎 | 11.11 | 11.11 | 22.22 | 22.22 | 33.34 |
芥菜叶 | 22.22 | 0.00 | 33.34 | 22.22 | 22.22 |
污染等级 | 安全(<0.7) | 警戒级(0.7~1.0) | 轻度污染(1.0~2.0) | 中度污染(2.0~3.0) | 重度污染(>3.0) |
---|---|---|---|---|---|
芥菜根 | 0.00 | 0.00 | 0.00 | 22.22 | 77.78 |
芥菜茎 | 11.11 | 11.11 | 22.22 | 22.22 | 33.34 |
芥菜叶 | 22.22 | 0.00 | 33.34 | 22.22 | 22.22 |
[1] | Sultana M S, Jolly Y N, Yeasmin S, et al. Chapter 12-Transfer of Heavy Metals and Radionuclides from Soil to Vegetables and Plants in Bangladesh[M].San DiegoAcademic Press, 2015:331-366. |
[2] |
Rizwan M, Ali S, Abbas T, et al. Cadmium minimization in wheat: A critical review[J]. Ecotoxicol Environ Saf, 2016, 130:43-53.
doi: 10.1016/j.ecoenv.2016.04.001 URL |
[3] | Xie L, Pengfei H, Yu C, et al. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice[J]. Ecotoxicology & Environmental Safety, 2018, 162:71-76. |
[4] |
Niazi N K, Bishop T F A, Singh B. Evaluation of Spatial Variability of Soil Arsenic Adjacent to a Disused Cattle-Dip Site, Using Model-Based Geostatistics[J]. Environmental Science & Technology, 2011, 45(24):10463-10470.
doi: 10.1021/es201726c URL |
[5] |
Mao C, Song Y, Chen L, et al. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice[J]. CATENA, 2019, 175:339-348.
doi: 10.1016/j.catena.2018.12.029 URL |
[6] | Yang L, Huang B, Mao M, et al. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China[J]. Environmental Science & Pollution Research, 2015, 22(9):6679-6686. |
[7] | Xu L, Lu A, Wang J, et al. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China[J]. Ecotoxicology & Environmental Safety, 2015, 122(DEC.):214-220. |
[8] |
Rai P K, Lee S S, Zhang M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125:365-385.
doi: 10.1016/j.envint.2019.01.067 URL |
[9] |
Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals—Concepts and applications[J]. Chemosphere, 2013, 91(7):869-881.
doi: 10.1016/j.chemosphere.2013.01.075 URL |
[10] | Lasat M M. Phytoextraction of toxic metals: a review of biological mechanisms[J]. J Environ Qual, 2002, 31(1):109-120. |
[11] |
Mi B, Liu F, Xie L, et al. Evaluation of the uptake capacities of heavy metals in Chinese cabbage[J]. Ecotoxicology and Environmental Safety, 2019, 171:511-517.
doi: 10.1016/j.ecoenv.2019.01.022 URL |
[12] | Wang X, Shi Y, Chen X, et al. Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress[J]. Environmental Science & Pollution Research International, 2015, 22(21):16590-16599. |
[13] | Wang L, Xu Y, Sun Y, et al. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation[J]. Frontiers of Environmental Science & Engineering, 2014, 8(6):877-887. |
[14] |
Liu B, Wu F, Dai X, et al. Variations of Cadmium Accumulation and Translocation in Different Pakchoi Cultivars and Screening for Cd-Pollution-Safe Cultivars Using Cluster Analysis[J]. Polish Journal of Environmental Studies, 2019, 28(4):2215-2222.
doi: 10.15244/pjoes/89980 URL |
[15] | 刘峰, 弭宝彬, 魏瑞敏, 等. 基于聚类分析法筛选低镉累积辣椒品种[J]. 园艺学报, 2017, 44(5):979-986. |
[16] | Xin J, Huang B, Liu A, et al. Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil: uptake and redistribution to the edible plant parts[J]. Plant & Soil, 2013, 373(1-2):415-425. |
[17] | Li X, Zhou Q, Wei S, et al. Identification of cadmium-excluding welsh onion (Allium fistulosum L.) cultivars and their mechanisms of low cadmium accumulation[J]. Environmental Science & Pollution Research, 2012, 19(5):1773-1780. |
[18] | He B Y, Ling L, Zhang L, et al. Cultivar-specific differences in heavy metal (Cd, Cr, Cu, Pb, and Zn) concentrations in water spinach (Ipomoea aquatic‘Forsk’) grown on metal-contaminated soil[J]. Plant & Soil, 2015, 386(1-2):251-262. |
[19] |
Hu W, Huang B, Tian K, et al. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk[J]. Chemosphere, 2017, 167:82-90.
doi: 10.1016/j.chemosphere.2016.09.122 URL |
[20] | 文典. 珠三角地区土壤中5种重金属在叶菜类蔬菜中的累积特征及其环境安全临界值[D]. 武汉:华中农业大学, 2012. |
[21] | 杨庆娥, 任振江, 高然. 污水灌溉对土壤和蔬菜中重金属积累和分布影响研究[J]. 中国农村水利水电 2007(5):74-75. |
[22] |
Yuan Y, Xiang M, Liu C, et al. Chronic impact of an accidental wastewater spill from a smelter, China: A study of health risk of heavy metal(loid)s via vegetable intake[J]. Ecotoxicol Environ Saf, 2019, 182:109401.
doi: 10.1016/j.ecoenv.2019.109401 URL |
[23] | 弭宝彬, 刘碧琼, 周火强, 等. 不同萝卜品种对5种重金属响应规律研究[J]. 核农学报, 2020, 34(5):1119-1127. |
[24] | 杜俊杰, 李娜, 吴永宁, 等. 蔬菜对重金属的积累差异及低积累蔬菜的研究进展[J]. 农业环境科学学报, 2019, 38(6):1193-1201. |
[25] |
Tapash, Dasgupta, Shahid, A., et al. An arsenate tolerance gene on chromosome 6 of rice[J]. New Phytologist, 2004, 163(1):45-49.
doi: 10.1111/j.1469-8137.2004.01109.x pmid: 33873777 |
[26] |
Bezerril Fontenele N M, Oliveira Otoch M D L, Gomes-Rochette N F, et al. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation[J]. Chemosphere, 2017, 176(JUN.):397-404.
doi: 10.1016/j.chemosphere.2017.02.072 URL |
[27] | Xin J, Huang B. Subcellular Distribution and Chemical Forms of Cadmium in Two Hot Pepper Cultivars Differing in Cadmium Accumulation[J]. Journal of Agricultural & Food Chemistry, 2014, 62(2):508-515. |
[28] | Xin J, Huang B, Dai H, et al. Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars[J]. Environmental Science & Pollution Research, 2015, 22(8):6254-6261. |
[29] |
Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables[J]. Environmental Pollution, 2006, 144(3):736-745.
pmid: 16647172 |
[30] |
Fang H, Li W, Tu S, et al. Differences in cadmium absorption by 71 leaf vegetable varieties from different families and genera and their health risk assessment[J]. Ecotoxicol Environ Saf, 2019, 184:109593.
doi: 10.1016/j.ecoenv.2019.109593 URL |
[31] | 刘维涛, 周启星, 孙约兵, 等. 大白菜(Brassica pekinensis L.)对镉富集基因型差异的研究[J]. 应用基础与工程科学学报, 2010, 18(2):226-235. |
[32] | 王若男, 乜兰春, 张双双, 等. 植物抗重金属胁迫研究进展[J]. 园艺学报, 2019, 46(1):162-175 |
[33] |
Wang G, Zhang S, Zhong Q, et al. Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metals -contaminated soil after washing with biodegradable chelators[J]. Journal of Cleaner Production, 2018, 197:479-490.
doi: 10.1016/j.jclepro.2018.06.225 URL |
[34] |
Shahid M, Dumat C, Khalid S, et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake[J]. J Hazard Mater, 2017, 325:36-58.
doi: 10.1016/j.jhazmat.2016.11.063 URL |
[1] | 李晓宇. 苇基杏鲍菇栽培及产品分析[J]. 中国农学通报, 2023, 39(1): 51-55. |
[2] | 洪慈清, 桂芳泽, 陈芳容, 方云, 游雨欣, 关雄, 潘晓鸿. 茶渣制备的生物质炭对重金属镍的吸附研究[J]. 中国农学通报, 2022, 38(9): 109-114. |
[3] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[4] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[5] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[6] | 赵越, 张晓艳, 曹焜, 韩承伟, 姜颖, 边境, 王晓楠, 孙宇峰. 工业大麻抗逆生理及分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 102-106. |
[7] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[8] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
[9] | 张晓晴, 李雅, 魏珊, 任大军, 张淑琴. 基于CiteSpace土壤重金属污染防治的知识图谱研究[J]. 中国农学通报, 2022, 38(4): 133-143. |
[10] | 张慧敏, 鲍广灵, 周晓天, 高琳琳, 胡宏祥, 马友华. 严格管控类耕地特定农作物重金属安全性评估[J]. 中国农学通报, 2022, 38(3): 52-58. |
[11] | 王爱仙, 刘福阳, 鲍兴禄, 王紫璎, 刘新锐, 王怡暄, 赵俊敏, 巫仁高, 黄志龙, 吴小平. 覆土材料对灵芝产量与品质的影响[J]. 中国农学通报, 2022, 38(28): 48-51. |
[12] | 褚向乾, 李红娜, 吕卫光, 郑宪清, 李双喜, 张娟琴, 王全华, 张翰林. 水丰湖流域沉积物、底质营养物及重金属含量调查与评价[J]. 中国农学通报, 2022, 38(28): 72-78. |
[13] | 焦永康. 天冬氨酸衍生物在土壤重金属污染治理方面的研究进展[J]. 中国农学通报, 2022, 38(28): 79-82. |
[14] | 桂娟, 常海伟, 和君强, 符云聪, 戴青云, 黎红亮, 刘代欢. 中南有色金属冶炼场地与周边土壤重金属污染概况及稳定化修复技术研究进展[J]. 中国农学通报, 2022, 38(27): 86-93. |
[15] | 廖雨梦, 李祖然, 祖艳群, 刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(24): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||