中国农学通报 ›› 2021, Vol. 37 ›› Issue (27): 77-81.doi: 10.11924/j.issn.1000-6850.casb2020-0788
所属专题: 生物技术
收稿日期:
2020-12-15
修回日期:
2021-04-13
出版日期:
2021-09-25
发布日期:
2021-10-28
通讯作者:
杨瑰丽
作者简介:
李津璇,女,1997年出生,甘肃酒泉人,硕士研究生在读,研究方向:作物遗传育种。通信地址:510642 广东广州天河区华南农业大学科技楼 国家植物航天育种工程技术研究中心,Tel:19120395242,E-mail: 基金资助:
Li Jinxuan(), Guo Min, Wang Jiafeng, Yang Guili(
)
Received:
2020-12-15
Revised:
2021-04-13
Online:
2021-09-25
Published:
2021-10-28
Contact:
Yang Guili
摘要:
AT-hook基因是能够编码与双链DNA小沟中富含AT碱基的序列特异性结合的一类基因,其所编码的蛋白含有以甘氨酸-精氨酸-脯氨酸(GRP)三个氨基酸残基为中心的DNA结合蛋白基序。笔者通过对AT-hook基因的特点和功能及其在拟南芥及水稻等高等植物开花中的调控作用综述。AT-hook基因不仅参与植物的生长发育及逆境胁迫与激素信号应答,同时在花器官的形成以及植物开花中也起着重要的调控作用。该基因在花器官组织中的表达量最高,影响成花素基因的表达,且其编码蛋白能够通过改变染色质状态或招募蛋白复合体在表观水平上调控植物开花相关基因的转录,从而影响植物开花。该基因可能为植物开花的表观遗传调控提供了新的途径。
中图分类号:
李津璇, 郭敏, 王加峰, 杨瑰丽. AT-hook基因及其在植物开花调控中的研究进展[J]. 中国农学通报, 2021, 37(27): 77-81.
Li Jinxuan, Guo Min, Wang Jiafeng, Yang Guili. AT-hook Genes and Their Role in the Regulation of Flowering in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 77-81.
[1] | Mouradov A, Cremer F Coupland G. Control of flowering time: interacting pathways as a basis for diversity[J]. Plant Cell, 2002, 14 Suppl:S111-S130. |
[2] | 曾群, 赵仲华, 赵淑清. 植物开花时间调控的信号途径[J]. 遗传, 2006, 28(8):1031-1036. |
[3] | 张艺能, 周玉萍, 陈琼华, 等. 拟南芥开花时间调控的分子基础[J]. 植物学报, 2014, 49(4):469-482. |
[4] | 孔德艳, 陈守俊, 周立国, 等. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6):532-542. |
[5] |
Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins[J]. Nucleic Acids Research, 1998, 26(19):4413-4421.
pmid: 9742243 |
[6] |
Bishop E H, Kumar R, Luo F, et al. Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize[J]. Genomics, 2020, 112(2):1233-1244.
doi: 10.1016/j.ygeno.2019.07.009 URL |
[7] | Zhao J, Favero D S, Qiu J, et al. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants[J]. BMC Plant Biology, 2014, 14(1). |
[8] |
Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene[J]. Cell, 1992, 71(5):777-789.
pmid: 1330326 |
[9] |
Strick R, Laemmli U K. SARs are cis DNA elements of chromosome dynamics: synjournal of a SAR repressor protein[J]. Cell, 1995, 83(7):1137-1148.
pmid: 8548801 |
[10] |
Falvo J V, Thanos D, Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y)[J]. Cell, 1995, 83(7):1101-1111.
pmid: 8548798 |
[11] | 肖朝文, 陈福禄, 傅永福. AT-hook基因AHL27过量表达延迟拟南芥开花[J]. 中国农业科技导报, 2009, 11(4):89-94. |
[12] |
Favero D S, Kawamura A, Shibata M, et al. AT-Hook transcription factors restrict petiole growth by antagonizing PIFs[J]. Current Biology, 2020, 30(8):1454-1466 e6.
doi: S0960-9822(20)30190-1 pmid: 32197081 |
[13] |
Street I H, Shah P K, Smith A M, et al. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis[J]. Plant Journal, 2008, 54(1):1-14.
doi: 10.1111/j.1365-313X.2007.03393.x URL |
[14] |
Zhou J, Wang X, Lee J Y. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning[J]. Plant Cell, 2013, 25(1):187-201.
doi: 10.1105/tpc.112.102210 URL |
[15] | Froese P S. AHL9, AHL11, and AHL12: gene overexpression and phenotypic analysis in Arabidopsis[D]. Washington: Washington State University Honors College, 2012. |
[16] | Sirl M, Snajdrova T, Gutierrez-Alanis D, et al. At-Hook Motif Nuclear Localised Protein 18 as a Novel Modulator of Root System Architecture[J]. International Journal of Molecular Sciences, 2020, 21(5). |
[17] |
Lim P O, Kim Y, Breeze E, et al. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants[J]. Plant Journal, 2007, 52(6):1140-1153.
doi: 10.1111/tpj.2007.52.issue-6 URL |
[18] |
Matsushita A, Furumoto T, Ishida S, et al. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase[J]. Plant Physiology, 2007, 143(3):1152-1162.
pmid: 17277098 |
[19] | 贾琦石. 拟南芥AT-hook基因TEK调控阿拉伯半乳糖蛋白AGPs控制花粉外壁内层发育[D]. 上海:上海师范大学, 2014. |
[20] |
Zhou L, Liu Z, Liu Y, et al. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientific Reports, 2016, 6:30264.
doi: 10.1038/srep30264 URL |
[21] |
Endt D V, Silva M S E, Kijne J W, et al. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins[J]. Plant Physiology, 2007, 144(3):1680-1689.
doi: 10.1104/pp.107.096115 URL |
[22] | 丁丽雪, 李涛, 李植良, 等. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析[J]. 植物遗传资源学报, 2016, 17(2):303-315. |
[23] | Matsushita A, Ohmi M, Yamaka K, et al. Analysis of AGF1, an AT-hook transcription factor involved in GA-negative feedback of AtGA3ox1[J]. Plant and Cell Physiology, 2007, 48:S59-S59. |
[24] |
Filichkin S A, Wu Q, Busov V, et al. Enhancer trapping in woody plants: Isolation of the ET304 gene encoding a putative AT-hook motif transcription factor and characterization of the expression patterns conferred by its promoter in transgenic Populus and Arabidopsis[J]. Plant Science, 2006, 171(2):206-216.
doi: 10.1016/j.plantsci.2006.03.011 URL |
[25] | 张大勇, 戚维聪, 万群, 等. 5个大豆AT-hook基因GmAHLs的克隆与定位分析[J]. 植物资源与环境学报, 2017, 26(4):1-7. |
[26] | 张贵慰, 曾珏, 郭维, 等. 水稻AT-hook基因家族生物信息学分析[J]. 植物学报, 2014, 49(1):49-62. |
[27] |
Xu Y, Zong W, Hou X, et al. OsARID3, an AT-rich Interaction Domain-containing protein, is required for shoot meristem development in rice[J]. Plant Journal, 2015, 83(5):806-17.
doi: 10.1111/tpj.2015.83.issue-5 URL |
[28] | 唐雄杰, 郭维, 王云月, 等. 水稻内稃发育相关基因PAL1时空表达研究[J]. 云南农业大学学报, 2011, 26(2):149-155. |
[29] |
Yin D, Liu X, Shi Z, et al. An AT-hook protein DEPRESSED PALEA1 physically interacts with the TCP Family transcription factor RETARDED PALEA1 in rice[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):487-492.
doi: 10.1016/j.bbrc.2017.11.031 URL |
[30] |
Jin Y, Luo Q, Tong H N, et al. An AT-hook gene is required for palea formation and floral organ number control in rice[J]. Developmental Biology, 2011, 359(2):277-288.
doi: 10.1016/j.ydbio.2011.08.023 URL |
[31] |
Luo Q, Zhou K, Zhao X, et al. Identification and fine mapping of a mutant gene for palealess spikelet in rice[J]. Planta, 2005, 221(2):222-230.
doi: 10.1007/s00425-004-1438-8 URL |
[32] |
Weigel D, Ahn J H, Blazquez M A, et al. Activation tagging in Arabidopsis[J]. Plant Physiology, 2000, 122(4):1003-1013.
pmid: 10759496 |
[33] |
Ng K H, Yu H, Ito T. AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation[J]. PLOS Biology, 2009, 7(11):e1000251.
doi: 10.1371/journal.pbio.1000251 URL |
[34] |
Su Y, Kwon C S, Bezhani S, et al. The N-terminal ATPase AT-hook-containing region of the Arabidopsis chromatin-remodeling protein SPLAYED is sufficient for biological activity[J]. Plant Journal, 2006, 46(4):685-699.
doi: 10.1111/tpj.2006.46.issue-4 URL |
[35] |
Yun J, Kim Y S, Jung J H, et al. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis[J]. The Journal of Biological Chemistry, 2012, 287(19):15307-15316.
doi: 10.1074/jbc.M111.318477 URL |
[36] |
Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues[J]. Nature Reviews Genetics, 2012, 13(9):627-639.
doi: 10.1038/nrg3291 URL |
[37] |
Brambilla V, Fornara F. Molecular control of flowering in response to day length in rice[J]. Journal of Integrative Plant Biology, 2013, 55(5):410-418.
doi: 10.1111/jipb.12033 |
[38] | Hayama R, Izawa T, Yano M, et al. A gene network controlling photoperiodic regulation of flowering in rice[J]. Plant and Cell Physiology, 2002, 43:S77-S77. |
[39] |
Komiya R, Shimamoto K. Genetic and epigenetic regulation of flowering in rice[J]. Plant Biotechnology, 2008, 25(3):279-284.
doi: 10.5511/plantbiotechnology.25.279 URL |
[40] |
Lee Y S, An G. Regulation of Flowering Time in Rice[J]. Journal of Plant Biology, 2015, 58(6):353-360.
doi: 10.1007/s12374-015-0425-x URL |
[41] |
Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation[J]. Current Opinion Plant Biology, 2011, 14(1):45-52.
doi: 10.1016/j.pbi.2010.08.016 URL |
[42] |
Tsuji H, Taoka K, Shimamoto K. Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions[J]. Current Opinion in Plant Biology, 2013, 16(2):228-235.
doi: 10.1016/j.pbi.2013.01.005 URL |
[43] |
Sun X, Zhang Z, Wu J, et al. The Oryza sativa regulator HDR1 associates with the Kinase OsK4 to control photoperiodic flowering[J]. PLoS Genetics, 2016, 12(3):e1005927.
doi: 10.1371/journal.pgen.1005927 URL |
[44] |
Yang J, Lee S, Hang R L, et al. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice[J]. Plant Journal, 2013, 73(4):566-578.
doi: 10.1111/tpj.2013.73.issue-4 URL |
[45] |
He Y. Control of the transition to flowering by chromatin modifications[J]. Molecular Plant, 2009, 2(4):554-564.
doi: 10.1093/mp/ssp005 URL |
[46] |
He Y. Chromatin regulation of flowering[J]. Trends in Plant Science, 2012, 17(9):556-562.
doi: 10.1016/j.tplants.2012.05.001 URL |
[47] |
He Y, Amasino R M. Role of chromatin modification in flowering-time control[J]. Trends in Plant Science, 2005, 10(1):30-35.
doi: 10.1016/j.tplants.2004.11.003 URL |
[48] |
Yang L, Conway S R, Poethig R S. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156[J]. Development, 2011, 138(2):245-249.
doi: 10.1242/dev.058578 pmid: 21148189 |
[49] | Shi J, Dong A, Shen W H. Epigenetic regulation of rice flowering and reproduction[J]. Frontiers in Plant Science, 2015, 5. |
[50] |
Sun C H, Fang J, Zhao T L, et al. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice[J]. Plant Cell, 2012, 24(8):3235-3247.
doi: 10.1105/tpc.112.101436 URL |
[51] |
Sui P F, Shi J L, Gao X Y, et al. H3K36 methylation is involved in promoting rice flowering[J]. Molecular Plant, 2013, 6(3):975-977.
doi: 10.1093/mp/sss152 URL |
[1] | 白玛仁增, 顿玉多吉, 德例归吉, 德吉央宗, 益西多吉, 边巴次仁. 星-地结合对水稻高温热害监测模型的研究[J]. 中国农学通报, 2023, 39(1): 133-141. |
[2] | 罗先富, 刘文强, 潘孝武, 董铮, 刘三雄, 刘利成, 阳标仁, 盛新年, 李小湘. 应用剩余杂合体衍生的近等基因系定位水稻株高QTL[J]. 中国农学通报, 2022, 38(9): 1-5. |
[3] | 黄钰, 陈斌, 肖关丽. 云南哈尼族地方水稻‘月亮谷’对褐飞虱取食危害的生理反应[J]. 中国农学通报, 2022, 38(9): 123-129. |
[4] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[5] | 王一凡, 劳晓璨, 余丽萍, 叶海龙. 水稻‘甬优15’分期播种的气象条件适宜性试验研究[J]. 中国农学通报, 2022, 38(7): 106-109. |
[6] | 李雪枫, 王坚, 叶晓园, 张秀婷, 王丽学. 苦瓜植株水浸提液对水稻种子萌发和秧苗生长的影响[J]. 中国农学通报, 2022, 38(6): 1-7. |
[7] | 闫蕴韬, 何兮, 张海清, 贺记外. 水稻种子耐贮性研究进展[J]. 中国农学通报, 2022, 38(5): 1-8. |
[8] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
[9] | 李荣田, 时柳, 黄丽莹, 刘长华. 利用分子选择培育水稻‘吉粳88’(hd2/hd4)导入系[J]. 中国农学通报, 2022, 38(33): 1-9. |
[10] | 伊嘉雯, 冯棣, 朱崴, 亓娜, 滕奉魁, 卢小引. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33): 10-14. |
[11] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. |
[12] | 许丹阳, 李虹颖, 孙义祥, 邬刚, 王家宝, 袁嫚嫚, 王佩旋, 张祥明, 束孝海. 不同比例有机无机肥配施对水稻产量与氮素利用率的影响[J]. 中国农学通报, 2022, 38(31): 1-5. |
[13] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[14] | 李舟, 杨雅云, 戴陆园, 张斐斐, 阿新祥, 董超, 王斌, 汤翠凤. 水稻白叶枯病抗性基因和相关因子研究利用进展[J]. 中国农学通报, 2022, 38(30): 91-99. |
[15] | 王明, 吴辉, 孙小成, 蒋小军, 雷干农, 陶卫, 柏长青, 徐敏. 孕穗期高温对水稻生理特性和产量性状影响研究[J]. 中国农学通报, 2022, 38(30): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||