中国农学通报 ›› 2021, Vol. 37 ›› Issue (4): 25-30.doi: 10.11924/j.issn.1000-6850.casb20200300246
所属专题: 生物技术
收稿日期:
2020-03-23
修回日期:
2020-05-14
出版日期:
2021-02-05
发布日期:
2021-01-25
通讯作者:
卢存福
作者简介:
杨颖,女,1994年出生,江苏南京人,助理研究员,硕士,研究方向:植物非生物胁迫抗性分子细胞生物学。通信地址:100083 北京市海淀区清华东路35号 北京林业大学生物科学与技术学院,Tel:010-62338346,E-mail: 基金资助:
Yang Ying(), Kang Lan, Geng Xin, Chen Yuzhen, Lu Cunfu(
)
Received:
2020-03-23
Revised:
2020-05-14
Online:
2021-02-05
Published:
2021-01-25
Contact:
Lu Cunfu
摘要:
原生质体作为单细胞且具有全能性,为研究植物细胞壁生物合成提供了独特的视角和模型。原生质体细胞壁再生过程复杂,涉及诸多细胞信号转导通路,应用普通的研究方法难以全面解析整个再生壁过程的分子网络。为充分了解植物原生质体再生壁内在特性,推动植物原生质体再生壁的分子机理进一步完善,笔者从原生质体再生细胞壁培养、细胞壁再生的细胞生物学证据、结合诸多组学技术研究细胞壁再生分子机理3个方面进行系统分析和归纳总结。分析了不同植物原生质体培养的主要影响因素如植物材料限制、培养基及培养方式的差异;归纳了2种常用染料应用于原生质体再生壁可视化研究的进展;总结了转录组、蛋白组及更为精细的核蛋白组及磷蛋白组技术在揭示细胞壁再生分子网络机理方面的应用和意义,并提出了对原生质体细胞壁再生机理深入研究的展望。
中图分类号:
杨颖, 康兰, 耿新, 陈玉珍, 卢存福. 植物原生质体再生细胞壁研究进展[J]. 中国农学通报, 2021, 37(4): 25-30.
Yang Ying, Kang Lan, Geng Xin, Chen Yuzhen, Lu Cunfu. Research Progress of Cell Wall Regeneration from Plant Protoplast[J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 25-30.
[1] |
Cosgrove D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005,6(11):850-861.
URL pmid: 16261190 |
[2] |
Kennedy D, Norman C. What Don't We Know?[J]. Science, 2005,309:75.
URL pmid: 15994521 |
[3] | Mishra A K, Colvin J R. The formation of wall-like envelopes by isolated tomato-fruit protoplasts[J]. Protoplasma, 1969,67(4):295-305. |
[4] |
Shea E M. Structural analysis of the cell walls regenerated by carrot protoplasts[J]. Planta, 1989,179:293-308.
doi: 10.1007/BF00391074 URL pmid: 24201658 |
[5] |
Cooper J B, Heuser J E, Varner J E. 3,4-Dehydroproline inhibits cell wall assembly and cell division in tobacco protoplasts[J]. Plant Physiology, 1994,104(2):747-752.
doi: 10.1104/pp.104.2.747 URL pmid: 8159790 |
[6] |
Parmentier Y, Durr A, Marbach J, et al. A novel wound-inducible extensin gene is expressed early in newly isolated protoplasts of Nicotiana sylvestris[J]. Plant Molecular Biology, 1995,29(2):279-292.
URL pmid: 7579179 |
[7] |
Keegstra K, Talmadge K W, Bauer W D, et al. The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components[J]. Plant Physiology, 1973,51(1):188-197.
doi: 10.1104/pp.51.1.188 URL pmid: 16658282 |
[8] | Carpita N C. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth[J]. Plant Journal, 1993,3(1):1-30. |
[9] |
Keegstra K. Plant cell walls[J]. Plant Physiology, 2010,154(2):483-486.
URL pmid: 20921169 |
[10] |
Davey M R, Anthony P, Power J B, et al. Plant protoplasts: status and biotechnological perspectives[J]. Biotechnology Advances, 2005,23(2):131-171.
doi: 10.1016/j.biotechadv.2004.09.008 URL |
[11] | Jones A M, Chattopadhyay A, Shukla M, et al. Inhibition of phenylpropanoid biosynjournal increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana)[J]. BMC Plant Biology, 2012,12(1):75. |
[12] | Pojnar E, Willison J, Cocking E J. Cell-wall regeneration by isolated tomato-fruit protoplasts[J]. Protoplasma, 1967,64(4):460-480. |
[13] | Bernard H, Pedro M, Coutinho, et al. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana[J]. Plant Molecular Biology, 2001,47(1):55-72. |
[14] | Coutinho P M, Stam M, Blanc E, et al. Why are there so many carbohydrate-active enzyme-related genes in plants?[J]. Trends in Plant Sciences, 2003,8:563-565. |
[15] |
Imoto K, Yokoyama R, Nishitani K. Comprehensive approach to genes involved in cell wall modifications in Arabidopsis thaliana[J]. Plant Molecular Biology, 2005,58(2):177-192.
URL pmid: 16027973 |
[16] |
Brown D. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. Plant Cell, 2005,17(8):2281-2295.
doi: 10.1105/tpc.105.031542 URL pmid: 15980264 |
[17] |
Mujahid H, Tan F, Zhang J, et al. Nuclear proteome response to cell wall removal in rice (Oryza sativa)[J]. Proteome Science, 2013,11(1):26.
URL pmid: 23777608 |
[18] | 岳晋军. 毛竹再生体系构建的初步研究[D]. 北京:中国林业科学研究院, 2008. |
[19] | Rezazadeh R, Niedz R P. Protoplast isolation and plant regeneration of guava (Psidium guajava L.) using experiments in mixture-amount design[J]. Plant Cell, 2015,122(3):585-604. |
[20] |
Schirawski J, Planchais S, Haenni A L . An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymovirus: a simple and reliable method[J]. Journal of Virological Methods, 2000,86(1):85-94.
doi: 10.1016/s0166-0934(99)00173-1 URL pmid: 10713379 |
[21] |
Frearson E M, Power J B, Cocking E C. The isolation, culture and regeneration of Petunia leaf protoplasts[J]. Developmental Biology, 1973,33(1):130-137.
URL pmid: 4789596 |
[22] |
Wiszniewska A, Piwowarczyk B. Studies on cell wall regeneration in protoplast culture of legumes the effect of organic medium additives on cell wall components[J]. Czech Journal of Genetics and Plant Breeding, 2014,50(2):84-91.
doi: 10.17221/CJGPB URL |
[23] | Deveaux Y, Toffano-Nioche C, Claisse G, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis[J]. BMC Evolutionary Biology, 2008,8(291):1-19. |
[24] |
Harrison C J, Roeder A H, Meyerowitz E M, et al. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens[J]. Current Biology, 2009,19(6):461-471.
doi: 10.1016/j.cub.2009.02.050 URL pmid: 19303301 |
[25] |
Pilet P E, Blaschek W, Senn A, et al. Comparison between maize root cells and their respective regenerating protoplasts: wall polysaccharides[J]. Planta, 1984,161(5):465-469.
doi: 10.1007/BF00394579 URL pmid: 24253848 |
[26] | 郝艳芳, 王良群, 刘勇, 等. 禾谷类作物原生质体培养研究进展[J]. 中国农学通报, 2016,32(35):19-23. |
[27] |
Kao K N, Michayluk M R. Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media[J]. Planta, 1975,126(2):105-110.
doi: 10.1007/BF00380613 URL pmid: 24430152 |
[28] |
Nagata T, Takebe I. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts[J]. Planta, 1970,92(4):301-308.
doi: 10.1007/BF00385097 URL pmid: 24500300 |
[29] | Liesche J, Ziomkiewicz I, Schulz A. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells[J]. BMC Plant Biology, 2013,13(1):226. |
[30] | Ryusuke Y, Hiroaki K, Takeshi K, et al. Arabidopsis regenerating protoplast: a powerful model system for combining the proteomics of cell wall proteins and the visualization of cell wall dynamics[J]. Proteomes, 2016,4(4):34. |
[31] |
Fisher D D, Cyr R J. Extending the microtubule/microfibril paradigm cellulose synjournal is required for normal cortical microtubule alignment in elongating cells[J]. Plant Physiology, 1998,116(3):1043-1051.
doi: 10.1104/pp.116.3.1043 URL pmid: 9501137 |
[32] | 黄祥辉, 颜季琼. 应用荧光增白剂VBL研究原生质体细胞壁的再生[J]. 植物生理学报, 1980(2):104-108. |
[33] |
Kuki H, Higaki T, Yokoyama R, et al. Quantitative confocal imaging method for analyzing cellulose dynamics during cell wall regeneration in Arabidopsis mesophyll protoplasts[J]. Plant Direct, 2017,1(6):e00021.
doi: 10.1002/pld3.21 URL pmid: 31245675 |
[34] |
Adam T, Wojciech B, Stefan M, et al. Structural and ultrastructural analysis of Solanum lycopersicoides protoplasts during diploid plant regeneration[J]. Annals of Botany, 2002,90(2):269-278.
doi: 10.1093/aob/mcf186 URL pmid: 12197525 |
[35] |
Tylicki A, Burza W, Malepszy S, et al. Changes in the organization of the tubulin cytoskeleton during the early stages of Solanum lycopersicoides Dun protoplast culture[J]. Plant Cell Reports, 2003,22(5):312-319.
doi: 10.1007/s00299-003-0692-8 URL pmid: 14648107 |
[36] | Morse M, Pironcheva, Gehring C. AtPNP-A is a systemically mobile natriuretic peptide immunoanalogue with a role in Arabidopsis thaliana cell volume regulation[J]. FEBS Letters, 2004,556(1):99-103. |
[37] | Hamako , Sasamoto , Shinjiro , et al. Development of novel elongated fiber-structure in protoplast cultures of Betula platyphylla and Larix leptolepis[J]. Vitro Cellular & Developmental Biology Plant, 2003,39:223-238. |
[38] | Jamet E, Hervé C, Boudart G, et al. Cell wall proteins: a new insight through proteomics[J]. Trends in Plant Science, 2006,11(1):39. |
[39] |
Chivasa S, Ndimba B K, Simon W J, et al. Proteomic analysis of the Arabidopsis thaliana cell wall[J]. Electrophoresis, 2002,23(11):1754-1765.
doi: 10.1002/1522-2683(200206)23:11<1754::AID-ELPS1754>3.0.CO;2-E URL pmid: 12179997 |
[40] |
Pandey A. Proteomics to study genes and genomes[J]. Nature, 2000,405:837-846.
doi: 10.1038/35015709 URL pmid: 10866210 |
[41] |
Kwon H K, Yokoyama R, Nishitani K J. A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells[J]. Plant Cell Physiology, 2005,46(6):843-857.
doi: 10.1093/pcp/pci089 URL pmid: 15769804 |
[42] |
Yang X, Tu L, Zhu L, et al. Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray[J]. Journal of Experimental Botany, 2008,59(13):3661-3674.
doi: 10.1093/jxb/ern214 URL pmid: 18775953 |
[43] |
Tan F, Zhang K, Mujahid H, et al. Differential Histone Modification and Protein Expression Associated with Cell Wall Removal and Regeneration in Rice (Oryza sativa)[J]. Journal of Proteome Research, 2011,10(2):551-563.
doi: 10.1021/pr100748e URL pmid: 20958091 |
[44] | 张保才, 周奕华. 植物细胞壁形成机制的新进展[J]. 中国科学:生命科学, 2015,45(6):544-556. |
[45] |
Parsons H T, Christiansen K, Knierim B, et al. Isolation and proteomic characterization of the Arabidopsis golgi defines functional and novel components involved in plant cell wall biosynjournal[J]. Plant Physiology, 2012,159(1):12-26.
doi: 10.1104/pp.111.193151 URL pmid: 22430844 |
[46] |
Wang X, Qi M, Li J, et al. The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants[J]. Journal of Experimental Botany, 2014,65(8):2093-2106.
doi: 10.1093/jxb/eru082 URL pmid: 24700621 |
[47] | 刘玉薇, 王晓琴. 小立碗藓原生质体再生过程中蛋白质相互作用网络分析[J]. 北京农学院学报, 2016,31(4):1-6. |
[48] |
Bidhendi A J, Geitmann A. Relating the mechanics of the primary plant cell wall to morphogenesis[J]. Journal of Experimental Botany, 2015,67(2):449-461.
doi: 10.1093/jxb/erv535 URL pmid: 26689854 |
[49] |
Le Gall H, Philippe F, Domon J M, et al. Cell Wall Metabolism in Response to Abiotic Stress[J]. Plants, 2015,4(1):112-166.
URL pmid: 27135320 |
[50] |
Jost A I, Hoson T, Iversen T H. The utilization of plant facilities on the international space station- the composition, growth, and development of plant cell walls under microgravity conditions[J]. Plants, 2015,4(1):44-62.
doi: 10.3390/plants4010044 URL pmid: 27135317 |
[1] | 白一苇, 张世壮, 王雁楠, 高晓茹, 牛金彪, 何绍贞. 植物组织培养中抗污染培养基新配方的探索[J]. 中国农学通报, 2021, 37(6): 89-96. |
[2] | 董鲁浩, 李晓慧, 宋语宁, 王贺, 李兴国, 别晓敏. 5-氮杂胞嘧啶核苷降低小麦成熟胚再生频率[J]. 中国农学通报, 2021, 37(3): 26-30. |
[3] | 王春芳, 刘晶晶, 李伟, 栾素荣, 史慎奎, 刘国庆. 糜子愈伤诱导及再分化最适条件研究[J]. 中国农学通报, 2020, 36(9): 94-99. |
[4] | 刘忠奇, 贺记外, 张海清, 刘爱民. 植物种子脱水耐性的研究现状分析与展望[J]. 中国农学通报, 2020, 36(2): 36-41. |
[5] | 李惠玲, 罗玉兰, 章漳, 尹丽娟, 李圃锦, 张冬梅. 细梗蔷薇种子发芽及组织培养技术研究[J]. 中国农学通报, 2020, 36(13): 89-93. |
[6] | 何鹏亮, 蒋美艳, 邓淑琼, 伍旭东, 揭雨成, 邢虎成. 苎麻体细胞植株再生体系优化研究[J]. 中国农学通报, 2020, 36(12): 104-110. |
[7] | 王珺华,王凯琪,王凯,孙志宏,曹园,齐向英. 山丹丹原生质体的分离条件探究[J]. 中国农学通报, 2019, 35(34): 64-71. |
[8] | 牛瑜菲,彭建营. 酸枣花粉原生质体的分离条件研究[J]. 中国农学通报, 2019, 35(32): 53-56. |
[9] | 李洪丽,端木慧子,马春泉. 甜菜直接再生体系的建立及优化[J]. 中国农学通报, 2019, 35(30): 31-36. |
[10] | 田 菊,白婷玉,铁 英,李奕稹,林晓飞. 高抗寒毛白杨杂种离体培养及玻璃化苗研究[J]. 中国农学通报, 2019, 35(29): 70-75. |
[11] | 都明理,徐娇,朱楚然,王丽红,隋春,魏建和. 利用组织培养技术快速繁殖白木香[J]. 中国农学通报, 2019, 35(26): 80-83. |
[12] | 邵冰洁,刘文竹,许建新,高永慧,赵惠恩. 小滨菊组培快繁体系的初步建立[J]. 中国农学通报, 2019, 35(2): 62-67. |
[13] | 王因花,燕丽萍,孔雨光,李丽,王开芳,刘翠兰,任飞,吴德军. 绒毛白蜡组培快繁研究[J]. 中国农学通报, 2019, 35(14): 41-46. |
[14] | 王桢,张永春,杨柳燕,蔡友铭,李青竹. 西红花组织培养研究进展[J]. 中国农学通报, 2019, 35(12): 100-106. |
[15] | 杨贞,张永春,杨柳燕,陈敏敏,蔡友铭. 牡丹再生及遗传转化体系构建的研究进展[J]. 中国农学通报, 2019, 35(11): 56-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||