中国农学通报 ›› 2022, Vol. 38 ›› Issue (26): 124-132.doi: 10.11924/j.issn.1000-6850.casb2021-0895
马笑1,2(), 张世浩1, 张芬1,2, 刘发波1,2, 梁涛1,2,3, 王孝忠1,2(
), 陈新平1,2
收稿日期:
2021-09-13
修回日期:
2021-11-09
出版日期:
2022-09-15
发布日期:
2022-09-09
通讯作者:
王孝忠
作者简介:
马笑,男,1997年出生,安徽马鞍山人,硕士研究生,研究方向:蔬菜养分资源管理。通信地址:400715 重庆市北碚区天生路2号 西南大学,E-mail: 基金资助:
MA Xiao1,2(), ZHANG Shihao1, ZHANG Fen1,2, LIU Fabo1,2, LIANG Tao1,2,3, WANG Xiaozhong1,2(
), CHEN Xinping1,2
Received:
2021-09-13
Revised:
2021-11-09
Online:
2022-09-15
Published:
2022-09-09
Contact:
WANG Xiaozhong
摘要:
蔬菜系统由于过量氮肥施用导致的高活性氮损失受到当前全球科学界的广泛关注。为了解全球蔬菜系统活性氮损失的热点和发展趋势,本研究借助VOSviewer可视化分析软件对21世纪以来发表在Web of Science核心数据库中有关蔬菜系统活性氮损失的444篇SCI论文进行计量研究和可视化分析。结果表明:蔬菜活性氮损失领域的研究在全球的受重视程度越来越高。中国和美国是发文量最多和论文受认可度最高的2个国家;中国科学院是该领域重要的研究机构,其发文量、本地被引频次和总被引频次都位居首位。Science of the Total Environment和Agriculture Ecosystems & Environment是该领域刊载论文量最多的2种期刊。从作者及合作关系来看,同聚类间作者合作紧密,不同聚类间作者合作较少。对关键词共线热点演变分析得知:该领域的研究热点由田块尺度上探究蔬菜系统氮淋洗和N2O排放转向微观尺度上通过微生物指标研究菜地土壤氮循环对活性氮损失的影响、宏观尺度上利用模型模拟和整合分析对区域N2O的估算、不同减排措施对活性氮减排效果的评估、菜地的N2O排放对温室效应和土壤有机碳固存的影响。菜地N2O排放作为蔬菜系统活性氮损失领域的研究发展过程中关注度最高的研究主题,未来也极有可能是该领域发展的热点和趋势。
中图分类号:
马笑, 张世浩, 张芬, 刘发波, 梁涛, 王孝忠, 陈新平. 基于Web of Science对蔬菜系统活性氮损失研究的文献计量分析[J]. 中国农学通报, 2022, 38(26): 124-132.
MA Xiao, ZHANG Shihao, ZHANG Fen, LIU Fabo, LIANG Tao, WANG Xiaozhong, CHEN Xinping. Bibliometric Analysis of Reactive Nitrogen Loss in Vegetable System Based on Web of Science[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 124-132.
排名 | 国家 | 发文量/篇 | 占比/% | 总被引次数/次 |
---|---|---|---|---|
1 | 中国 | 236 | 53.15% | 5618 |
2 | 美国 | 75 | 16.89% | 2366 |
3 | 德国 | 48 | 10.81% | 738 |
4 | 澳大利亚 | 43 | 9.68% | 778 |
5 | 西班牙 | 36 | 8.11% | 739 |
6 | 加拿大 | 28 | 6.31% | 318 |
7 | 意大利 | 20 | 4.50% | 270 |
8 | 英国 | 20 | 4.50% | 955 |
9 | 日本 | 16 | 3.60% | 307 |
10 | 丹麦 | 13 | 2.93% | 551 |
排名 | 国家 | 发文量/篇 | 占比/% | 总被引次数/次 |
---|---|---|---|---|
1 | 中国 | 236 | 53.15% | 5618 |
2 | 美国 | 75 | 16.89% | 2366 |
3 | 德国 | 48 | 10.81% | 738 |
4 | 澳大利亚 | 43 | 9.68% | 778 |
5 | 西班牙 | 36 | 8.11% | 739 |
6 | 加拿大 | 28 | 6.31% | 318 |
7 | 意大利 | 20 | 4.50% | 270 |
8 | 英国 | 20 | 4.50% | 955 |
9 | 日本 | 16 | 3.60% | 307 |
10 | 丹麦 | 13 | 2.93% | 551 |
排名 | 研究机构 | 发文量/篇 | 总被引次数/次 |
---|---|---|---|
1 | 中国科学院(CHINESE ACAD SCI) | 111 | 2586 |
2 | 中国农业大学(CHINA AGR UNIV) | 43 | 1836 |
3 | 南京农业大学(NANJING AGR UNIV) | 40 | 1193 |
4 | 中国农业科学院(CHINESE ACAD AGR SCI) | 27 | 357 |
5 | 阿尔梅里亚大学(UNIV ALMERIA) | 24 | 552 |
6 | 佛罗里达大学(UNIV FLORIDA) | 14 | 329 |
7 | 墨尔本大学(UNIV MELBOURNE) | 13 | 185 |
8 | 卡尔斯鲁厄理工学院(KARLSRUHE INST TECHNOL) | 12 | 173 |
9 | 西南大学(SOUTHWEST UNIV) | 12 | 125 |
10 | 浙江大学(ZHEJIANG UNIV) | 12 | 372 |
排名 | 研究机构 | 发文量/篇 | 总被引次数/次 |
---|---|---|---|
1 | 中国科学院(CHINESE ACAD SCI) | 111 | 2586 |
2 | 中国农业大学(CHINA AGR UNIV) | 43 | 1836 |
3 | 南京农业大学(NANJING AGR UNIV) | 40 | 1193 |
4 | 中国农业科学院(CHINESE ACAD AGR SCI) | 27 | 357 |
5 | 阿尔梅里亚大学(UNIV ALMERIA) | 24 | 552 |
6 | 佛罗里达大学(UNIV FLORIDA) | 14 | 329 |
7 | 墨尔本大学(UNIV MELBOURNE) | 13 | 185 |
8 | 卡尔斯鲁厄理工学院(KARLSRUHE INST TECHNOL) | 12 | 173 |
9 | 西南大学(SOUTHWEST UNIV) | 12 | 125 |
10 | 浙江大学(ZHEJIANG UNIV) | 12 | 372 |
排名 | 期刊名 | 发文量/篇 | 2019—2020年影响因子 | 分区 |
---|---|---|---|---|
1 | Science of the Total Environment | 31 | 7.963 | Q1 |
2 | Agriculture Ecosystems & Environment | 25 | 5.567 | Q1 |
3 | Agriculture Water Management | 24 | 4.516 | Q1 |
4 | Atmospheric Environment | 19 | 4.798 | Q1 |
5 | Environmental Pollution | 18 | 8.071 | Q1 |
6 | Nutrient Cycling in Agroecosystems | 16 | 3.27 | Q2 |
7 | European Journal of Agronomy | 12 | 5.124 | Q1 |
8 | Geoderma | 10 | 6.114 | Q1 |
9 | Journal of Soils and Sediments | 9 | 3.308 | Q2 |
10 | Pedosphere | 9 | 3.911 | Q2 |
排名 | 期刊名 | 发文量/篇 | 2019—2020年影响因子 | 分区 |
---|---|---|---|---|
1 | Science of the Total Environment | 31 | 7.963 | Q1 |
2 | Agriculture Ecosystems & Environment | 25 | 5.567 | Q1 |
3 | Agriculture Water Management | 24 | 4.516 | Q1 |
4 | Atmospheric Environment | 19 | 4.798 | Q1 |
5 | Environmental Pollution | 18 | 8.071 | Q1 |
6 | Nutrient Cycling in Agroecosystems | 16 | 3.27 | Q2 |
7 | European Journal of Agronomy | 12 | 5.124 | Q1 |
8 | Geoderma | 10 | 6.114 | Q1 |
9 | Journal of Soils and Sediments | 9 | 3.308 | Q2 |
10 | Pedosphere | 9 | 3.911 | Q2 |
排名 | 标题 | 作者 | 文章类型 | 出版年份 | 本地总被 引频次/次 | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | Nitrogen balance and groundwater Nitrate contamination: Comparison among three intensive Cropping systems on the North China Plain | JU XT | 研究型论文 | 2006 | 68 | |||||
2 | Measurements of nitrous oxide emissions from vegetable production in China | XIONG ZQ | 研究型论文 | 2006 | 56 | |||||
3 | Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China | HE FF | 研究型论文 | 2009 | 55 | |||||
4 | Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey | THOMPSON RB | 研究型论文 | 2007 | 40 | |||||
5 | Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China | WANG JY | 综述 | 2011 | 40 | |||||
6 | Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems | ZHU JH | 研究型论文 | 2005 | 38 | |||||
7 | Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China | HE FF | 研究型论文 | 2007 | 35 | |||||
8 | Study of nitrate leaching and nitrogen fate under Intensive vegetable production pattern in northern China | SONG XZ | 研究型论文 | 2009 | 32 | |||||
9 | The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation | ZHU TB | 研究型论文 | 2011 | 32 | |||||
10 | Fertiliser-induced nitrous oxide emissions from Vegetable production in the world and the regulating factors: A review | RASHTI MR | 综述 | 2015 | 31 |
排名 | 标题 | 作者 | 文章类型 | 出版年份 | 本地总被 引频次/次 | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | Nitrogen balance and groundwater Nitrate contamination: Comparison among three intensive Cropping systems on the North China Plain | JU XT | 研究型论文 | 2006 | 68 | |||||
2 | Measurements of nitrous oxide emissions from vegetable production in China | XIONG ZQ | 研究型论文 | 2006 | 56 | |||||
3 | Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China | HE FF | 研究型论文 | 2009 | 55 | |||||
4 | Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey | THOMPSON RB | 研究型论文 | 2007 | 40 | |||||
5 | Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China | WANG JY | 综述 | 2011 | 40 | |||||
6 | Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems | ZHU JH | 研究型论文 | 2005 | 38 | |||||
7 | Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China | HE FF | 研究型论文 | 2007 | 35 | |||||
8 | Study of nitrate leaching and nitrogen fate under Intensive vegetable production pattern in northern China | SONG XZ | 研究型论文 | 2009 | 32 | |||||
9 | The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation | ZHU TB | 研究型论文 | 2011 | 32 | |||||
10 | Fertiliser-induced nitrous oxide emissions from Vegetable production in the world and the regulating factors: A review | RASHTI MR | 综述 | 2015 | 31 |
[1] |
DONG J, GRUDA N, LI X, et al. Sustainable vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments-A review[J]. Journal of cleaner production, 2020, 253:119920.
doi: 10.1016/j.jclepro.2019.119920 URL |
[2] |
TEI F, DE NEVE S, De HAAN J, et al. Nitrogen management of vegetable crops[J]. Agricultural water management, 2020, 240:106316.
doi: 10.1016/j.agwat.2020.106316 URL |
[3] |
TI C, LUO Y, YAN X. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China[J]. Environmental science and pollution research, 2015, 22(23):18508-18518.
doi: 10.1007/s11356-015-5277-x URL |
[4] |
ZHOU J, LI B, XIA L, et al. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production[J]. Journal of cleaner production, 2019, 225:984-994.
doi: 10.1016/j.jclepro.2019.03.191 URL |
[5] |
ZHOU J, GU B, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific reports, 2016, 6(1):25088
doi: 10.1038/srep25088 URL |
[6] |
ZHANG X, GU B, Van GRINSVEN H, et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs[J]. Nature communications, 2020, 11(1):4357
doi: 10.1038/s41467-020-18196-z URL |
[7] |
LIU Q, QIN Y, ZOU J, et al. Annual nitrous oxide emissions from open-air and greenhouse vegetable cropping systems in China[J]. Plant and Soil, 2013, 370(1-2):223-233.
doi: 10.1007/s11104-013-1622-3 URL |
[8] |
DING H, LI S, ZHANG Y, et al. The fate of urea nitrogen applied to a vegetable crop rotation system[J]. Nutrient Cycling in Agroecosystems, 2015, 103(3):279-292.
doi: 10.1007/s10705-015-9738-x URL |
[9] |
MIN J, ZHAO X, SHI W, et al. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China[J]. Pedosphere, 2011, 21(4):464-472.
doi: 10.1016/S1002-0160(11)60148-3 URL |
[10] |
DUAN P, WU Z, ZHANG Q, et al. Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils[J]. Soil biology and biochemistry, 2018, 120:37-47.
doi: 10.1016/j.soilbio.2018.01.027 URL |
[11] |
DUAN P, ZHOU J, FENG L, et al. Pathways and controls of N2O production in greenhouse vegetable production soils[J]. Biology and fertility of soils, 2019, 55(3):285-297.
doi: 10.1007/s00374-019-01348-9 URL |
[12] |
ZHANG J, HE P, DING W, et al. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China[J]. Environmental pollution, 2021, 268:115004.
doi: 10.1016/j.envpol.2020.115004 URL |
[13] |
SHAN L, HE Y, CHEN J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Journal of environmental sciences, 2015, 38:14-23.
doi: 10.1016/j.jes.2015.04.028 URL |
[14] |
LV H, LIN S, WANG Y, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental pollution, 2019, 245:694-701.
doi: 10.1016/j.envpol.2018.11.042 URL |
[15] |
ZHANG B, LI Q, CAO J, et al. Reducing nitrogen leaching in a subtropical vegetable system[J]. Agriculture, Ecosystems & Environment, 2017, 241:133-141.
doi: 10.1016/j.agee.2017.03.006 URL |
[16] |
CHEN Y, ZHANG J, XU X, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China[J]. Agricultural water management, 2018, 210:165-170.
doi: 10.1016/j.agwat.2018.07.043 URL |
[17] |
Rezaei Rashti M, Wang W, Moody P, et al. Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: A review[J]. Atmospheric Environment, 2015, 112:225-233.
doi: 10.1016/j.atmosenv.2015.04.036 URL |
[18] |
WANG X, ZOU C, GAO X, et al. Nitrate leaching from open-field and greenhouse vegetable systems in China: a meta-analysis[J]. Environmental science and pollution research, 2018, 25(31):31007-31016.
doi: 10.1007/s11356-018-3082-z URL |
[19] |
LI T, ZHANG W, YIN J, et al. Enhanced‐efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global change biology, 2017, 24(2):e511-e521.
doi: 10.1111/gcb.13918 URL |
[20] |
LIU B, WANG X, MA L, et al. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis[J]. Environmental pollution, 2021, 269:116143.
doi: 10.1016/j.envpol.2020.116143 URL |
[21] |
ZHOU F, GUO H, HO Y, et al. Scientometric analysis of geostatistics using multivariate methods[J]. Scientometrics, 2007, 73(3):265-279.
doi: 10.1007/s11192-007-1798-5 URL |
[22] | 孙波, 王晓玥, 吕新华. 我国60年来土壤养分循环微生物机制的研究历程——基于文献计量学和大数据可视化分析[J]. 植物营养与肥料学报, 2017, 23(6):1590-1601. |
[23] | 陈香, 李卫民, 刘勤. 基于文献计量的近30年国内外土壤微生物研究分析[J]. 土壤学报, 2020, 57(6):1458-1470. |
[24] |
KASAVAN S, YUSOFF S, RAHMAT FAKRI M F, et al. Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020[J]. Journal of cleaner production, 2021, 313:127946.
doi: 10.1016/j.jclepro.2021.127946 URL |
[25] |
BAR-ILAN J. Which h-index? — A comparison of WoS, Scopus and Google Scholar[J]. Scientometrics, 2008, 74(2):257-271.
doi: 10.1007/s11192-008-0216-y URL |
[26] |
Van ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538.
doi: 10.1007/s11192-009-0146-3 URL |
[27] | 李兆耀, 王宁, 温正,等. 水足迹研究演变与中外研究对比——基于文献计量分析[J]. 生态经济, 2020, 36(11):180-187. |
[28] | 刘波, 李学斌, 陈林,等. 基于文献计量分析的土壤固碳研究进展[J]. 土壤通报, 2021, 52(1):211-220. |
[29] | 严陶韬, 高婷, 周之栋,等. 基于文献计量的生物炭土壤效应分析[J]. 江苏农业科学, 2021, 49(4):191-199. |
[30] | 曹梦, 李勇, 勾宇轩,等. 基于知识图谱的土壤中抗生素研究进展分析[J]. 农业资源与环境学报, 2020, 37(5):627-635. |
[31] | 杜志鹏, 苏德纯. 稻田重金属污染修复治理技术及效果文献计量分析[J]. 农业环境科学学报, 2018, 37(11):2409-2417. |
[32] | 刘秋霞, 吴汉卿, 黄正来. 基于全球文献计量的小麦响应气候变暖的研究[J]. 中国农学通报, 2019, 35(23):142-151. |
[33] |
MARŠIĆ N K, ATURM M, ZUPANC V, et al. Quality of white cabbage yield and potential risk of ground water nitrogen pollution, as affected by nitrogen fertilisation and irrigation practices[J]. Journal of the science of food and agriculture, 2012, 92(1):92-98.
doi: 10.1002/jsfa.4546 URL |
[34] |
ZHAO Y, LUO J, CHEN X, et al. Greenhouse tomato-cucumber yield and soil N leaching as affected by reducing N rate and adding manure: a case study in the Yellow River Irrigation Region China[J]. Nutrient cycling in agroecosystems, 2012, 94(2-3):221-235.
doi: 10.1007/s10705-012-9535-8 URL |
[35] |
MIN J, ZHANG H, SHI W. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production[J]. Agricultural water management, 2012, 111:53-59.
doi: 10.1016/j.agwat.2012.05.003 URL |
[36] |
YAN H, XIE L, GUO L, et al. Characteristics of nitrous oxide emissions and the affecting factors from vegetable fields on the North China Plain[J]. Journal of environmental management, 2014, 144:316-321.
doi: 10.1016/j.jenvman.2014.06.004 URL |
[37] |
Yao Z, Liu C, Dong H, et al. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations[J]. Environmental pollution, 2015, 196:89-97.
doi: 10.1016/j.envpol.2014.09.010 URL |
[38] |
LI B, FAN C H, XIONG Z Q, et al. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China[J]. Biogeosciences, 2015, 12(6):2003-2017.
doi: 10.5194/bg-12-2003-2015 URL |
[39] |
DUAN P, ZHANG Q, ZHANG X, et al. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors[J]. Agricultural and forest meteorology, 2019, 278:107672.
doi: 10.1016/j.agrformet.2019.107672 URL |
[40] |
ZHANG X, DUAN P, WU Z, et al. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil[J]. Science of the total environment, 2019, 687:433-440.
doi: 10.1016/j.scitotenv.2019.06.128 URL |
[41] |
WANG X, ZOU C, GAO X, et al. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis[J]. Environmental pollution, 2018, 239:375-383.
doi: 10.1016/j.envpol.2018.03.090 URL |
[42] |
YANG T, LI F, ZHOU X, et al. Impact of nitrogen fertilizer, greenhouse, and crop species on yield-scaled nitrous oxide emission from vegetable crops: A meta-analysis[J]. Ecological indicators, 2019, 105:717-726.
doi: 10.1016/j.ecolind.2019.02.001 URL |
[43] |
QASIM W, XIA L, LIN S, et al. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis[J]. Environmental pollution, 2021, 272:116372.
doi: 10.1016/j.envpol.2020.116372 URL |
[44] |
WANG X, ZOU C, ZHANG Y, et al. Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management: A case study in southwest China[J]. Journal of cleaner production, 2018, 171:934-943.
doi: 10.1016/j.jclepro.2017.09.258 URL |
[45] |
ZHANG F, LIU F, MA X, et al. Greenhouse gas emissions from vegetables production in China[J]. Journal of cleaner production, 2021, 317:128449.
doi: 10.1016/j.jclepro.2021.128449 URL |
[1] | 王绍新, 王宝宝, 李中建, 许洛, 冯健英. 中国鲜食玉米的研究脉络和趋势探析[J]. 中国农学通报, 2023, 39(1): 8-15. |
[2] | 马彪, 刘学录, 年丽丽, 李亮亮, 杨莹博. 2011—2020年土壤修复领域研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(5): 143-151. |
[3] | 张欣蕊, 冯启鑫, 安绮沄, 程丽, 李冲伟. 基于Web of Science紫苏研究进展与态势分析[J]. 中国农学通报, 2022, 38(4): 144-152. |
[4] | 王爱姣, 叶春蕾, 牛为民, 车发展. 2002—2022年国内外虎杖研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(35): 134-140. |
[5] | 杨睿哲, 陈兰兰, 刘雪健, 郑一鸣, 郑伟, 翟丙年, 王朝辉, 李紫燕. 基于文献计量学的农业生态荟萃分析的研究进展[J]. 中国农学通报, 2022, 38(31): 154-164. |
[6] | 赖佳, 韦树谷, 黄玲, 盛玉珍, 刘勇, 张骞方, 叶鹏盛. 白菜类蔬菜种质资源抽薹性状鉴定评价[J]. 中国农学通报, 2022, 38(28): 41-47. |
[7] | 管宏友. 土壤污染防治研究的文献计量分析及可视化表达[J]. 中国农学通报, 2022, 38(26): 133-138. |
[8] | 于跃跃, 郭宁, 闫实, 梁金凤, 马楠, 郭晓雪, 马自力, 田飞, 贾小红. 蚯蚓粪浸泡处理对3种蔬菜幼苗生长的影响[J]. 中国农学通报, 2022, 38(24): 45-50. |
[9] | 金涛涛, 赵明, 毛洁莹, 罗天宇, 刘玮, 王琼. 基于CiteSpace的球囊霉素相关土壤蛋白知识图谱分析[J]. 中国农学通报, 2022, 38(24): 100-108. |
[10] | 李梁, 董晓波, 毛昭庆. 加快云南蔬菜全产业链培育的路径研究[J]. 中国农学通报, 2022, 38(17): 121-127. |
[11] | 翁晓虹, 隋心. 基于Web of Science的森林土壤微生物多样性研究趋势分析[J]. 中国农学通报, 2022, 38(10): 157-164. |
[12] | 吴曼, 孟翠萍, 梁海燕, 杨丽玉, 吴琪, 慈敦伟, 郑永美, 李新国. 国内外根瘤菌研究的文献计量学分析[J]. 中国农学通报, 2022, 38(1): 155-164. |
[13] | 张红梅, 徐兴才, 王燕, 李向永, 尹艳琼, 赵雪晴, 刘莹, 陈福寿. 昆明菜区甜菜夜蛾和斜纹夜蛾发生规律[J]. 中国农学通报, 2021, 37(34): 121-126. |
[14] | 孙萌, 李荣田. 水稻蛋白质的研究热点可视化分析[J]. 中国农学通报, 2021, 37(28): 136-141. |
[15] | 李静超, 佘容, 杨晓燕. 土壤微生物宏基因组研究现状——基于Citespace文献计量分析[J]. 中国农学通报, 2021, 37(28): 142-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||