[1] |
ZHOU B, CHEN Y Y, ZENG L T, et al. Soil nutrient deficiency decreases the postharvest quality-related metabolite contents of tea (Camellia sinensis (L.) Kuntze) leaves[J]. Food chemistry, 2022,377:132003.
|
[2] |
YAO M Z, CHEN L. Tea germplasm and breeding in China[M]. Berlin Heidelberg: Springer, 2012:13-68
|
[3] |
国家统计局农村社会经济调查司. 中国农村统计年鉴2023[M]. 北京: 中国统计出版社, 2023:90-171.
|
[4] |
LIU S C, YAO M Z, MA C L, et al. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions[J]. Scientia horticulturae, 2015,184:129-141.
|
[5] |
STAGNARI F, GALIENI A, SPECA S, et al. Water stress effects on growth, yield and quality traits of red beet[J]. Scientia horticulturae, 2014,165:13-22.
|
[6] |
ANINBON C, JOGLOY S, VORASOOT N, et al. Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought[J]. Food chemistry, 2016,196:123-129.
|
[7] |
GAO L, CALDWELL C D, JIANG Y. Photosynthesis and growth of camelina and canola in response to water deficit and applied nitrogen[J]. Crop science, 2018,58:393-401.
|
[8] |
CHAKRABORTY U, DUTTA S, CHAKRABORTY B N. Response of tea plants to water stress[J]. Biologia plantarum, 2002,45:557-562.
|
[9] |
KHAN M Q N, SEVGIN N, RIZWANA H, et al. Exogenous melatonin mitigates the adverse effects of drought stress in strawberry by up regulating the antioxidant defense system[J]. South African journal of botany, 2023,162:658-666.
|
[10] |
李晓玲, 杨进, 孙雷, 等. 中华蚊母树在干旱-水淹交叉胁迫下形态和活性氧代谢的适应机制[J]. 生态学报, 2022, 42(19):7966-7977.
|
[11] |
刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展[J]. 生态学报, 2023, 43(24):10042-10053.
|
[12] |
BOLAT I, DIKILITAS M, IKINCI A, et al. Morphological, physiological, biochemical characteristics and bud success responses of myrobolan 29 C plum rootstock subjected to water stress[J]. Canadian journal of plant science, 2016,96:485-493.
|
[13] |
LOTFI R, PESSARAKLI M, GHARAVI-KOUCHEBAGH P, et al. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity[J]. The Crop Journal, 2015,3:434-439.
|
[14] |
XU L, PAN Y, YU F. Effects of water-stress on growth and physiological changes in Pterocarya stenoptera seedlings[J]. Scientia horticulturae, 2015,190:11-23.
|
[15] |
MCDONALD K L, CAHILL D M. Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interactions between Phytophthora sojae and soybean (Glycine max)[J]. European journal of plant pathology, 1999,105:651-658.
|
[16] |
UPADHYAYA H, PANDA S K, DUTTA B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta physiologiae plantarum, 2008,30:457-468.
|
[17] |
YUE C, CAO H, ZHANG S, et al. Multilayer omics landscape analyses reveal the regulatory responses of tea plants to drought stress[J]. International journal of biological macromolecules, 2023,253:126582.
|
[18] |
LV Z, ZHANG C, SHAO C, et al. Research progress on the response of tea catechins to drought stress[J]. Journal of the science of food and agriculture, 2021, 101(13):5305-5313.
|
[19] |
SEKI M, UMEZAWA T, URANO K, et al. Regulatory metabolic networks in drought stress responses[J]. Current opinion in plant biology, 2007,10:296-302.
|
[20] |
HEMEDA H M, KLEIN B P. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts[J]. Journal of food science, 2010,55:184-185.
|
[21] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote sensing of environment, 2002,81:337-354.
|
[22] |
JIANG M, ZHANG J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of experimental botany, 2002,53:2401-2410.
|
[23] |
JANECZKO A J, BIESAG-KOŚCIELNIAK J, OKLEŠT'KOVÁ M, et al. Role of 24-epibrassinolide in wheat production: Physiological effects and uptake[J]. Journal of agronomy & crop science, 2010,196:311-321.
|
[24] |
THIOULOUSE J, CHESSEL D, SYLVAIN D, et al. ADE-4 a multivariate analysis and graphical display software[J]. Statistics and computing, 1997, 7(1):75-83.
|
[25] |
GUPTA S, BHARAL P, BHORALI S K, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling[J]. Molecular biotechnology, 2013,53:237-248.
|
[26] |
王燕平, 王晓梅, 侯国强, 等. 干旱胁迫对不同生态型大豆生理生化特征的影响[J]. 中国农学通报, 2014, 30(12):93-100.
|
[27] |
ZHANG M, LIU Y, LI Z, et al. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean[J]. iScience, 2021,24:1-20.
|
[28] |
王小萍, 王云, 唐晓波, 等. 干旱胁迫对茶树生理指标的影响[J]. 西南农业学报, 2014, 27(3):1037-1040.
|
[29] |
陈博雯, 覃子海, 张烨, 等. 干旱胁迫下澳洲茶树生理活性及内源激素动态变化研究[J]. 山东农业科学, 2019, 51(10):55-59.
|
[30] |
BOARETTO L F, CARVALHO G, BORGO L, et al. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes[J]. Plant physiology & biochemistry, 2014,74:165-175.
|