中国农学通报 ›› 2020, Vol. 36 ›› Issue (29): 7-14.doi: 10.11924/j.issn.1000-6850.casb20200300238
所属专题: 水稻
全瑞兰(), 扶定, 马汉云, 霍二伟, 沈光辉, 郭桂英, 王青林(
)
收稿日期:
2020-03-22
修回日期:
2020-05-17
出版日期:
2020-10-15
发布日期:
2020-10-16
通讯作者:
王青林
作者简介:
全瑞兰,女,1985年出生,河南平顶山人,助理研究员,硕士,研究方向:水稻育种及优质高产栽培。通信地址:464000 河南省信阳市民权南街20号 信阳市农业科学院水稻所,E-mail:基金资助:
Quan Ruilan(), Fu Ding, Ma Hanyun, Huo Erwei, Shen Guanghui, Guo Guiying, Wang Qinglin(
)
Received:
2020-03-22
Revised:
2020-05-17
Online:
2020-10-15
Published:
2020-10-16
Contact:
Wang Qinglin
摘要:
水稻种子低温萌发力差,限制了直播稻的发展。为了促进水稻耐低温育种的研究,培育低温萌发能力强适宜直播的水稻新品种,本文概述了水稻种子低温萌发能力的评价方法;总结了水稻种子低温萌发时细胞膜性质、活性氧代谢、能量供给和激素含量等相关生理代谢的变化;概括了水稻种子低温萌发时依赖ABA信号转导和不依赖ABA信号转导的分子调控机制;综述了水稻低温萌发相关QTL定位和全基因组关联分析的遗传研究。在此基础上,综合分析了当前水稻耐低温萌发研究中存在的问题并提出了相关建议,旨在为水稻耐低温萌发的研究及新品种培育提供参考。
中图分类号:
全瑞兰, 扶定, 马汉云, 霍二伟, 沈光辉, 郭桂英, 王青林. 水稻种子低温萌发的研究进展[J]. 中国农学通报, 2020, 36(29): 7-14.
Quan Ruilan, Fu Ding, Ma Hanyun, Huo Erwei, Shen Guanghui, Guo Guiying, Wang Qinglin. Low-Temperature Germination of Rice Seeds: Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 7-14.
生理代谢指标 | 基因 | 参考文献 |
---|---|---|
电介质渗漏 | TERF2、OsOVP1、OsNAC5、CBF1/DREB1b | [12,14,15,59,60] |
MDA | OsAPXa | [23] |
抗氧化剂 | OsAPXa | [23] |
可溶性糖 | OsTPP1、OsTPP2、OsTPS1 | [24,25] |
脯氨酸 | OsCOIN、OsP5CS | [26] |
淀粉酶 | OsRamy1A、OsRamy3B、OsRamy3D、OsRamy3E | [32,33,41,42] |
ABA | OsNCED、OsABA8ox、OsABA20ox、OsNAC095 | [47,51,52] |
GA | OsGA20ox1、OsGA20ox2、OsGA20ox3、OsGA3ox1、OsGA2ox | [50] |
生理代谢指标 | 基因 | 参考文献 |
---|---|---|
电介质渗漏 | TERF2、OsOVP1、OsNAC5、CBF1/DREB1b | [12,14,15,59,60] |
MDA | OsAPXa | [23] |
抗氧化剂 | OsAPXa | [23] |
可溶性糖 | OsTPP1、OsTPP2、OsTPS1 | [24,25] |
脯氨酸 | OsCOIN、OsP5CS | [26] |
淀粉酶 | OsRamy1A、OsRamy3B、OsRamy3D、OsRamy3E | [32,33,41,42] |
ABA | OsNCED、OsABA8ox、OsABA20ox、OsNAC095 | [47,51,52] |
GA | OsGA20ox1、OsGA20ox2、OsGA20ox3、OsGA3ox1、OsGA2ox | [50] |
QTL | chr | 区间位置 | 表型鉴定 | 贡献率/% | 群体 | 参考文献 |
---|---|---|---|---|---|---|
qLTG-2 | 2 | G1327 | 15℃/4d发芽力 | 28.80 | Nipponbare/Kasalath的BIL群体 | [70] |
qLTG-2-1 | 2 | X67-R418 | 15℃/10d发芽力 | 33.25 | Kinmaze/DV85的RIL群体 | [72] |
qLTG-2 | 2 | X672R418 | 15℃/10d发芽力 | 27.10 | Kimnaze/Dv85的RIL群体 | [49] |
qLTG-3-1 | 3 | GBR3001-GBR3002 | 15℃/7d发芽率 | 35.10 | ItalicaLivorno/Hayamasari的RIL群体 | [75] |
qLTG3-2 | 3 | RM3436+6cM | 15℃/5d发芽率 | 23.00 | Maratteli/Akitakomachi的NIL群体 | [74] |
qLTG3-2 | 3 | RM3436+7cM | 15℃/5d发芽率 | 22.10 | Maratteli/Akitakomachi的NIL群体 | [74] |
qLTG-3 | 3 | RM282-RM16 | 15℃/14d发芽力 | 21.64 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-2 | 5 | RM163-RM421 | 15℃/14d发芽力 | 32.77 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-2 | 5 | RM163-RM421 | 15℃/14d发芽力 | 31.23 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-2 | 5 | RM163-RM421 | 15℃/14d发芽力 | 28.56 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-4 | 5 | RM421-RM334 | 15℃/14d发芽力 | 24.32 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-7 | 7 | R1440-R1357 | 15℃/10d发芽力 | 27.93 | Kinmaze/DV85的RIL群体 | [72] |
qLTG-7-1 | 7 | R1440-R1357 | 15℃/10d发芽力 | 22. 90 | Kimnaze/Dv85的RIL群体 | [49] |
qLVG7-1 | 7 | RM51-RM298 | 14℃/17d发芽势 | 22.90 | 密阳23/吉冷1号的F2:3群体 | [82] |
qLTG-9 | 9 | R79-R1751-G385 | 15℃/10d发芽率 | 25.28 | Nipponbare/Kasalath的BIL群体 | [81] |
qLTG-9 | 9 | R79-R1751-G385 | 15℃/10d发芽率 | 23.50 | Nipponbare/Kasalath的BIL群体 | [81] |
qLTG-11 | 11 | G1465-X389 | 15℃/10d发芽力 | 27.93 | Kinmaze/DV85的RIL群体 | [72] |
qCTP11 | 11 | RM1355-RM2191 | 5℃/10d成苗率 | 29.50 | Sasanishiki/Habataki的CSSL群体 | [71] |
QTL | chr | 区间位置 | 表型鉴定 | 贡献率/% | 群体 | 参考文献 |
---|---|---|---|---|---|---|
qLTG-2 | 2 | G1327 | 15℃/4d发芽力 | 28.80 | Nipponbare/Kasalath的BIL群体 | [70] |
qLTG-2-1 | 2 | X67-R418 | 15℃/10d发芽力 | 33.25 | Kinmaze/DV85的RIL群体 | [72] |
qLTG-2 | 2 | X672R418 | 15℃/10d发芽力 | 27.10 | Kimnaze/Dv85的RIL群体 | [49] |
qLTG-3-1 | 3 | GBR3001-GBR3002 | 15℃/7d发芽率 | 35.10 | ItalicaLivorno/Hayamasari的RIL群体 | [75] |
qLTG3-2 | 3 | RM3436+6cM | 15℃/5d发芽率 | 23.00 | Maratteli/Akitakomachi的NIL群体 | [74] |
qLTG3-2 | 3 | RM3436+7cM | 15℃/5d发芽率 | 22.10 | Maratteli/Akitakomachi的NIL群体 | [74] |
qLTG-3 | 3 | RM282-RM16 | 15℃/14d发芽力 | 21.64 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-2 | 5 | RM163-RM421 | 15℃/14d发芽力 | 32.77 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-2 | 5 | RM163-RM421 | 15℃/14d发芽力 | 31.23 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-2 | 5 | RM163-RM421 | 15℃/14d发芽力 | 28.56 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-5-4 | 5 | RM421-RM334 | 15℃/14d发芽力 | 24.32 | Kinmaze/DV85的F2:3 群体 | [73] |
qLTG-7 | 7 | R1440-R1357 | 15℃/10d发芽力 | 27.93 | Kinmaze/DV85的RIL群体 | [72] |
qLTG-7-1 | 7 | R1440-R1357 | 15℃/10d发芽力 | 22. 90 | Kimnaze/Dv85的RIL群体 | [49] |
qLVG7-1 | 7 | RM51-RM298 | 14℃/17d发芽势 | 22.90 | 密阳23/吉冷1号的F2:3群体 | [82] |
qLTG-9 | 9 | R79-R1751-G385 | 15℃/10d发芽率 | 25.28 | Nipponbare/Kasalath的BIL群体 | [81] |
qLTG-9 | 9 | R79-R1751-G385 | 15℃/10d发芽率 | 23.50 | Nipponbare/Kasalath的BIL群体 | [81] |
qLTG-11 | 11 | G1465-X389 | 15℃/10d发芽力 | 27.93 | Kinmaze/DV85的RIL群体 | [72] |
qCTP11 | 11 | RM1355-RM2191 | 5℃/10d成苗率 | 29.50 | Sasanishiki/Habataki的CSSL群体 | [71] |
[1] | 李霞, 陈竹林, 谢建坤, 等. 东乡野生稻杂交后代生育早期耐冷性和耐旱性鉴定[J]. 中国农学通报, 2016,32(3):8-15. |
[2] |
Zhang Z, Li J, Pan Y, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nat Commun, 2017,8:14788.
URL pmid: 28332574 |
[3] | 杨志涛. 多样性国际稻种低温、缺氧发芽力全基因组关联分析[D]. 长沙:湖南农业大学, 2017. |
[4] | 潘明泉. 水稻低温萌发能力评价方法的建立及耐低温萌发资源筛选[D]. 哈尔滨:东北农业大学, 2019. |
[5] | 金润洲. 日本关于水稻耐冷性鉴定及其遗传的研究[J]. 水稻文摘, 1990,9(3):1-5. |
[6] | 杨梯丰, 张少红, 王晓飞, 等. 多样性国际稻种四个生长发育时期的耐冷性及其与籼粳性的关系[J]. 分子植物育种, 2017,15(2):763-773. |
[7] | 王丽艳, 唐金敏, 郑桂萍, 等. 水稻萌发期和幼苗期耐低温指标体系构建及综合评价[J]. 中国农业科技导报, 2019,21(10):58-65. |
[8] | 李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015,48(4):646-660. |
[9] | 江玲, 候名语, 刘世家, 等. 水稻种子低温萌发生理机制的初步研究[J]. 中国农业科学, 2005(3):480-485. |
[10] |
Los D A, Murata N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochim Biophys Acta, 2004,1666(1-2):142-157.
URL pmid: 15519313 |
[11] | Prasad T K. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities[J]. Plant J, 2010,10(6):1017-1026. |
[12] |
Song S, Chen Y, Chen J, et al. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011,234(2):331-345.
doi: 10.1007/s00425-011-1403-2 URL pmid: 21448719 |
[13] | 张露霞. 水稻芽期耐冷性QTL定位与分析[D]. 南京:南京农业大学, 2006. |
[14] |
Zhang J, Li J, Wang X, et al. OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance[J]. Plant Physiol Biochem, 2011,49(1):33-38.
URL pmid: 20974539 |
[15] |
Tian , Y , Zhang H, Pan X, et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings[J]. Transgenic Research, 2011,20(4):857-866.
URL pmid: 21136294 |
[16] |
Schopfer P, Frahry GPC. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid[J]. Plant Physiol, 2001,125:1591-1602.
URL pmid: 11299341 |
[17] |
Krystyna O, Hayat E M B, Farrant J M, et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation[J]. Plant J, 2007,50:452-465.
URL pmid: 17376157 |
[18] | 郑安俭, 王州飞, 张红生. 作物种子萌发生理与遗传研究进展[J]. 江苏农业学报, 2017,33(1):218-223. |
[19] |
王国骄, 王嘉宇, 马殿荣, 等. 不同耐冷性杂草稻和栽培稻抗氧化系统对冷水胁迫的响应[J]. 中国农业科学, 2015,48(8):1660-1668.
doi: 10.3864/j.issn.0578-1752.2015.08.21 URL |
[20] | 郭慧, 李树杏, 孙平勇, 等. 不同基因型水稻苗期抗氧化系统对低温胁迫的响应[J]. 植物科学学报, 2019,37(1):63-69. |
[21] | 吴立群, 蔡志欢, 张桂莲, 等. 低温对不同耐冷性水稻品种秧苗生理特性及根尖解剖结构的影响[J]. 中国农业气象, 2018,39(12):805-813. |
[22] | 唐江红, 邓小书, 韩龙植, 等. 低温胁迫水稻幼芽生长及生理响应[J]. 西南农业学报, 2019,32(6):1248-1252. |
[23] |
Sato Y, Masuta Y, Saito K, et al. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa[J]. Plant Cell Rep, 2011,30(3):399-406.
doi: 10.1007/s00299-010-0985-7 URL |
[24] |
Shima S, Matsui H, Tahara S, et al. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes[J]. FEBS J, 2007,274(5):1192-1201.
URL pmid: 17257172 |
[25] |
Li H, Zang B, Deng X, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011,234(5):1007-1018.
doi: 10.1007/s00425-011-1458-0 URL |
[26] |
Liu , K , Wang L, Xu Y, et al. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007,226(4):1007-1016.
URL pmid: 17549515 |
[27] | 徐亮, 包维楷, 何永华. 种子贮藏物质变化及其贮藏生理[J]. 种子, 2003(5):61-64. |
[28] | 周宏伟. 水稻籽粒在萌发过程中胚乳消耗和淀粉体形态的变化[D]. 扬州:扬州大学, 2006. |
[29] | Williams J F, Peterson M L. Relations Between Alpha-amylase Activity at and Growth of Rice Seedlings[J]. Crop Sci, 1973,13:612-615. |
[30] |
Cui K, Peng S, Xing Y, et al. Molecular dissection of seedling-vigor and associated physiological traits in rice[J]. Theor Appl Genet, 2002,105:745-753.
URL pmid: 12582488 |
[31] |
Mahender A, Anandan A, Pradhan S K. Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers[J]. Planta, 2015,241:1027-1050.
doi: 10.1007/s00425-015-2273-9 URL pmid: 25805338 |
[32] | Shaw F J, Lee T M. Studies on the α-amylase from the germinated rice seeds[J]. Bot Bull Acad Sin, 1984,23:41-46. |
[33] |
Karrer E E, Rodriguez R L. Metabolic regulation of rice α-amylase and sucrose synthase genes in planta[J]. Plant J, 1992,2:517-523.
URL pmid: 1344888 |
[34] |
Bewley J D. Seed Germination and Dormancy[J]. Plant Cell, 1997,9:1055-1066.
doi: 10.1105/tpc.9.7.1055 URL pmid: 12237375 |
[35] |
Larondelle , Y , Corbineau F, Dethier M, et al. Fructose 2,6-bisphosphate in germinating oat seeds: A biochemical study of seed dormancy[J]. Eur J Biochem, 1987,166:605-610.
doi: 10.1111/j.1432-1033.1987.tb13556.x URL pmid: 2956097 |
[36] |
Aaron F, Ruthie A, Hadar L, et al. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches[J]. Plant Physiol, 2006,142:839-854.
doi: 10.1104/pp.106.086694 URL pmid: 16963520 |
[37] |
Weitbrecht K, Müller K, Leubnermetzger G. First off the mark: early seed germination[J]. J Exp Bot, 2011,62:3289-3309.
doi: 10.1093/jxb/err030 URL pmid: 21430292 |
[38] | 王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究[D]. 武汉:华中农业大学, 2019. |
[39] |
He Y, Cheng J, He Y, et al. Influence of isopropylmalate synthase OsIPMS1 on seed vigor associated with amino acid and energy metabolism in rice[J]. Plant Biotechnol J, 2019,17(2):322-337.
doi: 10.1111/pbi.12979 URL pmid: 29947463 |
[40] | 刘次桃, 王威, 毛毕刚, 等. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018,40(3):171-185. |
[41] |
Lee K, Chen P, Yu S. Metabolic adaptation to sugar/ O2 deficiency for anaerobic germination and seedling growth in rice[J]. Plant Cell Environ, 2014,37:2234-2244.
doi: 10.1111/pce.12311 URL pmid: 24575721 |
[42] |
Lu G, Gao C, Zheng X, et al. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009,229:605-615.
URL pmid: 19048288 |
[43] | 江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展[J]. 江苏农业学报, 2007(4):360-365. |
[44] | Park K M, Jun S Y, Choi K H, et al. Characterization of an exo-acting intracellular alpha-amylase from the hyperthermophilic bacterium Thermotoga neapolitana[J]. Appl Microbiol Biot, 2010,86:555-566. |
[45] | Ritchie S, Gilroy S. Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity[J]. P Natl Acad Sci USA, 1998,95:2697-2702. |
[46] |
Kerstin M, Ada L, Vreeburg R A M, et al. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth[J]. Plant Physiol, 2009,150:1855-1865.
doi: 10.1104/pp.109.139204 URL pmid: 19493972 |
[47] |
Ye N. ABA signal in rice under stress conditions[J]. Rice, 2011,5:1.
doi: 10.1186/1939-8433-5-1 URL pmid: 24764501 |
[48] | 曹雅君, 江玲, 罗林广, 等. 水稻品种休眠特性的研究[J]. 南京农业大学学报, 2001,24:1-5. |
[49] | 候名语. 水稻低温、低氧发芽力的QTL定位[D]. 南京:南京农业大学, 2003. |
[50] | Yamaguchi J. Analysis of embryo-specific alpha-amylase using isolated mature rice (Oryza sativa L.) embryos[J]. Jpn J Breed, 1998,48:365-370 |
[51] |
Mega R, Meguro-Maoka A, Endo A, et al. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.)[J]. Sci Rep, 2015,5:13819.
doi: 10.1038/srep13819 URL pmid: 26350634 |
[52] |
Huang L, Hong Y, Zhang H, et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biol, 2016,16:203.
URL pmid: 27646344 |
[53] |
Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009,324(5930):1064-1068.
doi: 10.1126/science.1172408 URL pmid: 19407143 |
[54] |
Kim H, Hwang H, Hong J W, et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth[J]. J Exp Bot, 2012,63(2):1013-1024.
URL pmid: 22071266 |
[55] | Hossain M A, Cho J I, Han M, et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Plant Physiol, 2010,167(17):1512-1520. |
[56] |
Jin X F, Xiong A S, Peng R H, et al. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis[J]. BMB Reports, 2010,43(1):34-39.
doi: 10.5483/bmbrep.2010.43.1.034 URL pmid: 20132733 |
[57] |
Zhang Q, Chen Q H, Wang S L, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice, 2014,7(1):24.
doi: 10.1186/s12284-014-0024-3 URL pmid: 25279026 |
[58] |
Saijo , Y , Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant Journal, 2000,23(3):319-327.
doi: 10.1046/j.1365-313x.2000.00787.x URL pmid: 10929125 |
[59] |
Lee S C, Huh K W, An K, et al. Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.)[J]. Molecules & Cells, 2004,18(1):107-114.
URL pmid: 15359131 |
[60] |
Akasaki , H , Maruyama K, kidokoro S, et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Mol Genet Genomics, 2010,284(3):173-183.
doi: 10.1007/s00438-010-0557-0 URL pmid: 20632034 |
[61] |
Joseph G. Dubouzet, Yoh Sakuma, Yusuke Ito Mie Kasuga, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought ,high-salt, and cold- responsive gene expression[J]. Plant J, 2003,33:751-763.
doi: 10.1046/j.1365-313x.2003.01661.x URL pmid: 12609047 |
[62] | Zabta K Shinwaria, Kazuo Nakashima, Setsuko Miura, et al. An arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature responsive gene expression[J]. Biochem Bioph Res Co, 1998,250(1):161-170. |
[63] |
Fernando Novillo, Jose´M. Alonso, Joseph R. Ecker, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. PNAS, 2004,101:3985-3990.
doi: 10.1073/pnas.0303029101 URL pmid: 15004278 |
[64] |
Xiao N, Huang W N, Li A H, et al. Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings[J]. Theor Appl Genet., 2015,128(1):173-185.
doi: 10.1007/s00122-014-2420-x URL pmid: 25367381 |
[65] |
Figueiredo D D, Barros P M, Cordeiro A M, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B[J]. J Exp Bot, 2012,63(10):3643-3656.
doi: 10.1093/jxb/ers035 URL pmid: 22412187 |
[66] | Mao D, Chen C, Wu K. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway[J]. Plos One, 2012,7(10):47275. |
[67] |
Wang Q Y, Guan Y C, Wu Y R, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol, 2008,67:589-602.
doi: 10.1007/s11103-008-9340-6 URL pmid: 18470484 |
[68] |
Li L, Liu X, Xie K, et al. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.)[J]. Theor Appl Genet, 2013,126(9):2313-2322.
doi: 10.1007/s00122-013-2137-2 URL pmid: 23748708 |
[69] | 藤胜, 曾大力, 钱前, 等. 低温条件下水稻发芽力QTL的定位分析[J]. 科学通报, 2001(13):1104-1108. |
[70] | Miura K, Lin S Y, Yano M, et al. Mapping quantitqtive trait loci controlling low-temperature germinability in rice (Oryza sativa L.)[J]. Breeding Sci, 2001,51(4):293-299. |
[71] | 雷建国. 低温胁迫下水稻耐冷性QTL定位及差异表达基因分析[D]. 南昌:江西农业大学, 2018. |
[72] | 纪素兰, 江玲, 王益华, 等. 水稻种子耐低温发芽力的QTL定位及上位性分析[J]. 作物学报, 2008(4):551-556. |
[73] | Jiang L, Liu S, Hou M, et al. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.)[J]. Field Crops Research, 2006,98(1):68-75. |
[74] | Satoh T, Tezuka K, Kawamoto T, et al. Identification of QTLs controlling low-temperature germination of the East European rice (Oryza sativa L.) variety Maratteli[J]. Euphytica, 2016,207(2):1-10. |
[75] |
Fujino K, Sekiguchi H, Sato T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)[J]. Theor Appl Genet, 2004,108(5):794-9.
doi: 10.1007/s00122-003-1509-4 URL pmid: 14624339 |
[76] |
Fujino K, Sekiguchi H, Matsuda Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1,controlling low-temperature germinability in rice[J]. Proc Natl Acad Sci USA, 2008,105(34):12623-12628.
doi: 10.1073/pnas.0805303105 URL pmid: 18719107 |
[77] |
Fujino K, Obara M, Shimizu T, et al. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region[J]. Breed Sci, 2015,65(5):403-410.
doi: 10.1270/jsbbs.65.403 URL pmid: 26719743 |
[78] |
Huang X H, Zhao Y, Wei X H, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nat Genet, 2012,44(1):32-39.
doi: 10.1038/ng.1018 URL pmid: 22138690 |
[79] |
Najeeb S, Ali J, Mahender A, et al. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination-and early seedling vigor-related traits in rice (Oryza sativa L.)[J]. Mol Breeding, 2020,40:10.
doi: 10.1007/s11032-019-1090-4 URL |
[80] | 张斌. 水稻苗期耐冷性状的全基因组关联分析及主效QTL的精细定位与应用[D]. 北京:中国农业科学院, 2018. |
[81] | 纪素兰, 江玲, 王益华, 等. 利用回交重组自交群体检测水稻耐低温发芽数量性状基因座[J]. 南京农业大学学报, 2007,30(1):1-6. |
[82] |
Han L, Zhang Y, Qiao Y, et al. Genetic and QTL Analysis for Low-Temperature Vigor of Germination in Rice[J]. Acta Genetica Sinica, 2006,33(11):998-1006.
doi: 10.1016/S0379-4172(06)60135-2 URL pmid: 17112971 |
[1] | 苟纪权, 苏丽文, 程志魁, 黄小春, 吴雯婷, 吕海旋, 刘政国. 冬瓜果肉叶绿素含量遗传分析[J]. 中国农学通报, 2023, 39(1): 45-50. |
[2] | 王思之, 关文灵, 郝晓函, 宋杰. 平铺白珠种子萌发特性研究[J]. 中国农学通报, 2023, 39(1): 77-84. |
[3] | 白玛仁增, 顿玉多吉, 德例归吉, 德吉央宗, 益西多吉, 边巴次仁. 星-地结合对水稻高温热害监测模型的研究[J]. 中国农学通报, 2023, 39(1): 133-141. |
[4] | 罗先富, 刘文强, 潘孝武, 董铮, 刘三雄, 刘利成, 阳标仁, 盛新年, 李小湘. 应用剩余杂合体衍生的近等基因系定位水稻株高QTL[J]. 中国农学通报, 2022, 38(9): 1-5. |
[5] | 黄钰, 陈斌, 肖关丽. 云南哈尼族地方水稻‘月亮谷’对褐飞虱取食危害的生理反应[J]. 中国农学通报, 2022, 38(9): 123-129. |
[6] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[7] | 董雨青, 魏雪苹, 强亭燕, 张本刚, 齐耀东, 刘海涛. 简化基因组测序技术在植物遗传分析中的应用[J]. 中国农学通报, 2022, 38(8): 25-32. |
[8] | 王一凡, 劳晓璨, 余丽萍, 叶海龙. 水稻‘甬优15’分期播种的气象条件适宜性试验研究[J]. 中国农学通报, 2022, 38(7): 106-109. |
[9] | 许昕阳, 张跃建, 沈佳, 寿伟松. 厚皮甜瓜‘翠雪5号’种子破休眠方法研究[J]. 中国农学通报, 2022, 38(7): 41-44. |
[10] | 姚洁, 程磊, 周涛, 雷鹏堃, 朱月健, 马磊. 国内太子参种质资源与遗传育种研究进展[J]. 中国农学通报, 2022, 38(7): 62-66. |
[11] | 李雪枫, 王坚, 叶晓园, 张秀婷, 王丽学. 苦瓜植株水浸提液对水稻种子萌发和秧苗生长的影响[J]. 中国农学通报, 2022, 38(6): 1-7. |
[12] | 陈道, 王新, 江山, 张洁, 吴祖建, 丁新伦. 福建地区草莓斑驳病毒全基因组测序和分子变异分析[J]. 中国农学通报, 2022, 38(6): 94-101. |
[13] | 闫蕴韬, 何兮, 张海清, 贺记外. 水稻种子耐贮性研究进展[J]. 中国农学通报, 2022, 38(5): 1-8. |
[14] | 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. SSR荧光检测解析224份山西玉米自交系的遗传结构与遗传关系[J]. 中国农学通报, 2022, 38(5): 9-16. |
[15] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||