欢迎访问《中国农学通报》,

中国农学通报 ›› 2020, Vol. 36 ›› Issue (32): 1-7.doi: 10.11924/j.issn.1000-6850.casb2020-0013

所属专题: 园艺 农业气象

• 农学·农业基础科学 •    下一篇

甜菜幼苗对干旱胁迫的适应机制

张净1,2(), 王锦霞1,2, 郭萌萌1,2, 马龙彪1,3, 兴旺1,3, 王茂芊1,3(), 刘大丽1,3()   

  1. 1黑龙江大学省高校甜菜遗传育种重点实验室/现代农业与生态环境学院,哈尔滨 150080
    2黑龙江大学省高校生化与分子生物学重点实验室/生命科学学院,哈尔滨 150080
    3黑龙江大学黑龙江省甜菜工程技术研究中心/现代农业与生态环境学院,哈尔滨 150080
  • 收稿日期:2020-04-16 修回日期:2020-06-28 出版日期:2020-11-15 发布日期:2020-11-19
  • 通讯作者: 王茂芊,刘大丽
  • 作者简介:张净,女,1994年出生,湖南湘西人,本科,研究方向:分子生物学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学农作物研究院,Tel:0451-86609494,E-mail: 1518252477@qq.com
  • 基金资助:
    农业部糖料现代产业技术体系建设项目“甜菜养分管理与土壤肥料”(CARS-170204);农业部糖料现代产业技术体系建设项目“甜菜高品质品种改良”(CARS-170111);黑龙江省自然基金“BvHIPP24基因在能源甜菜重金属镉污染生物修复中的分子机制研究”(LH2019C057);黑龙江省高校基本科研业务费项目“能源甜菜BvMPT11基因的Cd污染生物修复应答机制研究”(KJCX201920)

Beta vulgaris Seedlings: Adaptive Mechanism to Drought Stress

Zhang Jing1,2(), Wang Jinxia1,2, Guo Mengmeng1,2, Ma Longbiao1,3, Xing Wang1,3, Wang Maoqian1,3(), Liu Dali1,3()   

  1. 1Key Laboratory of Sugarbeet Genetics and Breeding, Heilongjiang University/College of Advanced Agriculture and Ecological Environment, Harbin 150080
    2Key Laboratory of Biochemistry and Molecular Biology/College of Life Sciences, Heilongjiang University, Harbin 150080
    3Sugar Beet Engineering Research Center of Heilongjiang Province, Heilongjiang University/College of Advanced Agriculture and Ecological Environment, Harbin 150080
  • Received:2020-04-16 Revised:2020-06-28 Online:2020-11-15 Published:2020-11-19
  • Contact: Wang Maoqian,Liu Dali

摘要:

为了研究甜菜幼苗在干旱逆境耐受过程中的应答机制,本研究以‘780016B/12优’为目的材料,通过设置不同浓度(3%、6%,9%以及15%)的PEG6000干旱胁迫来处理甜菜幼苗,并进行恢复生长,来衡量不同干旱胁迫处理间甜菜的相关生理生化指标和目的基因的表达量变化。研究结果表明,逆境胁迫24 h后,随着干旱强度的增加,甜菜幼苗植株的皱缩和萎蔫程度也逐渐严重,并伴随着叶片相对含水量(3.48%~15.86%)以及叶绿素含量(5.60~13.06)的下降;而体内的丙二醛和脯氨酸却大量累积,其中以15% PEG增加的尤为明显,分别高达48.23 μmol/L和201.37 μmol/L左右。逆境恢复后,3% PEG处理的甜菜幼苗的相对含水量(96.94%)、丙二醛含量(17.22 μmol/L)以及植株形态基本恢复到了正常水平;而高浓度PEG胁迫复性后,9% PEG处理的植株的相对含水量虽然恢复了8.48%左右,但丙二醛含量仍旧相对含量高达36.46 μmol/L;而脯氨酸在各组处理中,一直维持在较高水平。qPCR分析表明,干旱胁迫诱导BvGS基因受到了不同程度的诱导表达,分别是处理前的3.85、4.45、5.81、8.20倍左右,即使恢复生长,植株中该基因的表达量虽然有所下降,但仍旧维持在较高水平。因此,可以推测,甜菜幼苗通过调整细胞水势、氧化还原水平、光合作用以及渗透代谢平衡来适应干旱胁迫所带来的失水和质膜过氧化等不良反应,并有可能通过谷胱甘肽的合成来解毒由干旱逆境所带来的氧化伤害。

关键词: 甜菜, 干旱胁迫, 丙二醛, 脯氨酸, 谷胱甘肽合成酶

Abstract:

To study the response mechanism of sugar beet (Beta vulgaris L.) seedlings in the process of drought stress tolerance, ‘780016B/12you’ was chosen and treated with different concentrations (3%, 6%, 9% and 15%) of PEG6000 drought stress, and the seedling growth was restored to measure the changes in related physiological and biochemical data and aim gene expression among different drought stress treatments. The results showed that, with the increase of drought intensity, the degree of shrinkage and wilting of sugar beet seedlings was gradually serious after 24 h stress treatment, along with the decrease of relative water content (3.48%-15.86%) and chlorophyll content (5.60-13.06), while malondialdehyde and proline of leaves accumulated obviously, especially 15% PEG made malondialdehyde and proline reach about 48.23 μmol/L and 201.37 μmol/L, respectively. After stress recovery, the RWC (96.94%), MDA content (17.22 μmol/L) and morphology of sugar beet treated with 3% PEG basically recovered to the normal level; however, with high concentration of PEG, although the relative water content of seedlings in 9% PEG restored to 8.48%, the malondialdehyde content was still as high as 36.46 μmol/L; the proline always maintained at a high level in each treatment group. qPCR demonstrated that the expression of BvGS gene was induced by drought stress in different degrees with 3.85, 4.45, 5.81 and 8.20 times of that of control. Even after stress recovery, although the expression level of BvGS was decreased, it still maintained at a relative high level. Therefore, it could be inferred that sugar beet seedlings could adapt to the adverse reactions of water loss and plasma membrane peroxidation caused by drought stress through adjusting cell water potential, redox level, photosynthesis and osmotic metabolism balance, and might detoxify the oxidative damage induced by drought stress through glutathione synthesis.

Key words: Beta vulgaris, drought stress, malondialdehyde, proline, glutathione synthetase

中图分类号: