| [1] | SYTAR O, KUMAR A, LATOWSKI D, et al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants[J]. Acta physiologiae plantarum, 2013, 35(4):985-999. doi: 10.1007/s11738-012-1169-6    
																																					URL
 | 
																													
																						| [2] | 史淑芝, 程大友, 马凤鸣, 等. 生物质能源作物——能源甜菜的开发利用[J]. 中国农学通报, 2007(11):416-419. | 
																													
																						| [3] | THEURER J C, DONEY D L, SMITH G A, et al. Potential ethanol production from sugar beet and fodder beet[J]. Crop science, 1987, 27(5):1034-1040. doi: 10.2135/cropsci1987.0011183X002700050042x    
																																					URL
 | 
																													
																						| [4] | TOPPI L, GABBRIELLI R. Response to cadmium in higher plants[J]. Environmental & experimental botany, 1999, 41(2):105-130. | 
																													
																						| [5] | LIU D, AN Z, MAO Z, et al. Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination[J]. Plos one, 2015, 10(6):e0128824. doi: 10.1371/journal.pone.0128824    
																																					URL
 | 
																													
																						| [6] | AHMADI S, GHAFOURI H, TARAZI S, et al. Cloning, purification and biochemical characterization of two glutathione S-transferase isoforms from Rutilus frisii kutum[J]. Protein expression and purification, 2021, 179:105800. doi: 10.1016/j.pep.2020.105800    
																																					URL
 | 
																													
																						| [7] | EDWARDS R, DIXON D P, WALBOT V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health[J]. Trends in plant science, 2000, 5(5):193-198. doi: 10.1016/S1360-1385(00)01601-0    
																																					URL
 | 
																													
																						| [8] | ADAMIS P D B, GOMES D S, PINTO M L C C, et al. The role of glutathione transferases in cadmium stress[J]. Toxicol lett, 2004(154):81-88. | 
																													
																						| [9] | MCGONIGLE B. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize[J]. Plant physiology, 2000, 124(3):1105-1120. doi: 10.1104/pp.124.3.1105    
																																					URL
 | 
																													
																						| [10] | YU T, LI Y S, CHEN X F, et al. Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen[J]. Journal of plant physiology, 2003, 160(11):1305-1311. doi: 10.1078/0176-1617-01205    
																																					URL
 | 
																													
																						| [11] | ÁGNES GALLÉ. J CSISZÁR, SECENJI M,, et al. Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit[J]. Journal of plant physiology, 2009, 166(17):1878-1891. doi: 10.1016/j.jplph.2009.05.016    
																																					URL
 | 
																													
																						| [12] | JEPSON I, LAY V J, HOLT D C, et al. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV[J]. Plant molecular biology, 1994, 26(6):1855-1866. doi: 10.1007/BF00019498    
																																					URL
 | 
																													
																						| [13] | 刁桂萍. 二色补血草LbGST基因的克隆与功能分析[D]. 哈尔滨:东北林业大学, 2010. | 
																													
																						| [14] | DIRK D, KONSTANTIN G, CORINNA H, et al. Inhibitory effect of metals on animal and plant glutathione transferases[J]. Journal of trace elements in medicine and biology, 2020, 57:48-56. doi: 10.1016/j.jtemb.2019.09.007    
																																					URL
 | 
																													
																						| [15] | 陈秀华, 王臻昱, 李先平, 等. 谷胱甘肽S-转移酶的研究进展[J]. 东北农业大学学报, 2013, 44(1):149-153. | 
																													
																						| [16] | Perperopoulou F, Pouliou F, Labrou N E. Recent advances in protein engineering and biotechnological applications of glutathione transferases[J]. Critical reviews in biotechnology, 2017: 1-18. | 
																													
																						| [17] | 张英, 石朝艳, 汪娅梅, 等. 不同苎麻品种镉胁迫下谷胱甘肽硫转移酶基因的表达特征[J/OL]. 分子植物育种, 2021:1-17. | 
																													
																						| [18] | KILILI K G, ATANASSOVA N, VARDANYAN A, et al. Differential roles of tau class glutathione S-transferases in oxidative stress[J]. Journal of biological chemistry, 2004, 279(23):24540-51. doi: 10.1074/jbc.M309882200    
																																					URL
 | 
																													
																						| [19] | 张文凤. 镉胁迫下水稻根系GST蛋白质互作及差异表达蛋白质的分析[D]. 福州:福建农林大学, 2012. | 
																													
																						| [20] | KUMAR S, ASIF M H, CHAKRABARTY D, et al. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions[J]. Plant molecular biology reporter, 2013, 31(3):569-580. doi: 10.1007/s11105-012-0524-5    
																																					URL
 | 
																													
																						| [21] | DROOG F. Plant glutathione S-transferases, a tale of theta and tau[J]. Journal of plant growth regulation, 1997, 16(2):95-107. doi: 10.1007/PL00006984    
																																					URL
 | 
																													
																						| [22] | EDWARDS R, DIXON D P, WALBOT V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health[J]. Trends in plant science, 2000(5):193-198. | 
																													
																						| [23] | TRIPATHI A, INDOLIYA Y, TIWARI M, et al. Transformed yeast (Schizosac charomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium[J]. Metallomics, 2014, 6(8):1549-1557. doi: 10.1039/C4MT00083H    
																																					URL
 | 
																													
																						| [24] | SRIVASTAVA D, VERMA G, CHAUHAN A S, et al. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory net-work leading to heavy metal and drought stress tolerance[J]. Metallomics, 2019, 11(2):375-389. doi: 10.1039/C8MT00204E    
																																					URL
 | 
																													
																						| [25] | 王丽萍, 戚元成, 赵彦修, 等. 盐地碱蓬GST基因的克隆、序列分析及其表达特征[J]. 植物生理与分子生物学学报, 2002(2):133-136. | 
																													
																						| [26] | 王景荣, 张政达, 樊佳茹, 等. 甜瓜自毒相关基因CmGST的克隆及其对自毒胁迫的响应[J]. 西北植物学报, 2019, 39(7):1172-1180. | 
																													
																						| [27] | EDWARDS R, DIXON D P. Plant Glutathione Transferases[J]. Methods in enzymology, 2005, 401(3):169-186. | 
																													
																						| [28] | SMITA K, TRIVEDI P K. Glutathione S-Transferases: Role in combating abiotic stresses including arsenic detoxification in plants[J]. Frontiers in plant science, 2018, 9:751. doi: 10.3389/fpls.2018.00751    
																																					URL
 | 
																													
																						| [29] | 刘大丽, 李林, 王锦霞, 等. 能源甜菜BvGST基因在大肠杆菌体内对镉逆境的应答特性分析[J]. 中国农学通报, 2019, 35(36):116-121. |