中国农学通报 ›› 2021, Vol. 37 ›› Issue (36): 103-110.doi: 10.11924/j.issn.1000-6850.casb2021-0187
张文静(), 程建峰(), 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕
收稿日期:
2021-02-26
修回日期:
2021-06-13
出版日期:
2021-12-25
发布日期:
2022-02-15
通讯作者:
程建峰
作者简介:
张文静,女,2000年出生,江西彭泽人,本科,研究方向:作物生理生态。通信地址:330045 江西省南昌市国家经济技术开发区志敏大道1225号 江西农业大学农学院,Tel:0791-83828081,E-mail: 基金资助:
ZHANG Wenjing(), CHENG Jianfeng(), LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan
Received:
2021-02-26
Revised:
2021-06-13
Online:
2021-12-25
Published:
2022-02-15
Contact:
CHENG Jianfeng
摘要:
铁(Fe)是植物体内发现最早和含量最高的必需微量元素,参与许多生理过程和代谢途径,缺铁将严重影响其生长发育和产量品质。植物源食物中的Fe是动物和人类获取Fe的主要途径,摄入不足将损害其健康。为了充分了解Fe在植物体内的代谢生理,推动富Fe植物的培育和富Fe食物的研发,本文归纳了土壤和植物体内Fe的含量、形态及比例,总结了植物体内Fe的分布与功能,比较了植物应对少量可溶性Fe环境下的不同高效吸收策略,分析了Fe在细胞内和长距离运输中的调控机制。在此基础上,针对以往研究中存在的不足提出展望,认为今后应更多地关注:不同物种间的Fe代谢途径的差异及分子机理、Nramp家族基因如何调控植物缺Fe的吞噬机制、质体中铁蛋白(Fer)的氧化沉淀与还原释放机制和提高植物体内Fe含量及生物有效性的生物强化措施。
中图分类号:
张文静, 程建峰, 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕. 植物铁素(Fe)营养的生理研究进展[J]. 中国农学通报, 2021, 37(36): 103-110.
ZHANG Wenjing, CHENG Jianfeng, LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan. Nutrition Physiology of Iron (Fe) in Plants: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 103-110.
[1] |
BUESSELER K O, ANDREWS J E, PIKE S M, et al. The effects of iron fertilization on carbon sequestration in the southern ocean[J]. Science, 2004, 304(5669):414-417.
doi: 10.1126/science.1086895 URL |
[2] | 程建峰. 植物生理学[M]. 南昌: 江西高校出版社, 2019: 98. |
[3] | DIXIT S P, RAJAN L, PALANISWAMY D, et al. Importance of iron absorption in human health: An overview[J]. Current nutrition & food science, 2021, 17(3):293-301. |
[4] | MASUDA H, AUNG M S, KOBAYASHI T, et al. Iron biofortification: the gateway to overcoming hidden hunger. In: Costa de Oliveira A, Pegoraro C, Ebeling V V. (eds) The Future of Rice Demand: Quality Beyond Productivity[M]. Cham: Springer, 2020:149-177. |
[5] | 朴建华, 霍军生. 中国居民营养与健康状况监测报告[M]. 北京: 人民卫生出版社, 2019. |
[6] |
LUO T, LEI L, CHEN F, Z et al. Iron homeostasis in the human body and nutritional iron deficiency and solutions in China[J]. Journal of food biochemistry, 2018, 42(4):e12673.
doi: 10.1111/jfbc.2018.42.issue-6 URL |
[7] | 云少君, 赵广华. 植物铁代谢及植物铁蛋白结构与功能研究进展[J]. 生命科学, 2012, 24(8):809-816. |
[8] | RAWAT N, NEELAM K, TIWARI V K, et al. Biofortification of cereals to overcome hidden hunger[J]. Plant breeding, 2013, 132(5):437-445. |
[9] | GUPTA S, MADHAVAN N K, PUNJAL R, et al. Herbs as a dietary source of iron[J]. Nutrition & food science, 2014, 44(5):443-454. |
[10] |
BOUIS H E, WELCH R M. Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south[J]. Crop Science, 2010, 50:S20-S32.
doi: 10.2135/cropsci2009.09.0531 URL |
[11] | BOUIS H E, HOTZ C, MCCLAFFERTY B, et al. Biofortification: a new tool to reduce micronutrient malnutrition[J]. Food & nutrition bulletin, 2011, 32(1Suppl):S31-S40. |
[12] |
GILLIGAN D O. Biofortification, agricultural technology adoption, and nutrition policy: some lessons and emerging challenges[J]. Cesifo economic studies, 2012, 58(2):405-421.
doi: 10.1093/cesifo/ifs020 URL |
[13] |
MASUDA H, AUNG M S, NISHIZAWA N K. Iron biofortification of rice using different transgenic approaches[J]. Rice, 2013, 6(1):40.
doi: 10.1186/1939-8433-6-40 URL |
[14] | PRASAD R, SHIVAY Y S, KUMAR D. Agronomic biofortification of cereal grains with iron and zinc[J]. Advances in agronomy, 2014, 125:55-91. |
[15] | LEVIN C E, LONG J, SIMLER K R, et al. Cultivating nutrition: a survey of viewpoints on integrating agriculture and nutrition[J]. FCND discussion papers No. 154, International Food Policy Research Institute (IFPRI). 2003. |
[16] | 卢士军, 黄家章, 吴鸣, 等. 营养导向型农业的概念,发展与启示[J]. 中国农业科学, 2019, 52(18):3083-3088. |
[17] |
FAN S, YOSEF S, PANDYA-LORCH R. Linking agriculture to nutrition: the evolution of policy[J]. China agricultural economic review, 2020, 12(4):595-604.
doi: 10.1108/CAER-03-2020-0040 URL |
[18] |
SHARMA I K, SABINA D P, DIRK E, et al. Nutrition-sensitive agriculture: a systematic review of impact pathways to nutrition outcomes[J]. Advances in nutrition, 2021, 12(1):251-275.
doi: 10.1093/advances/nmaa103 URL |
[19] | YU H, LI J Y. Short and long term challenges in crop breeding[J]. National science review, 2021, 8(2):1. |
[20] | MENGEL K, KIRKBY E A. Principles of plant nutrition[M]. Dordrecht: Kluwer Academic Publishers, 2001. |
[21] | 地里拜尔·苏里坦, 艾尼瓦尔·买买提, 蔺娟. 土壤中铁锰的形态分布及其有效性研究[J]. 生态学杂志, 2006, 25(2):155-160. |
[22] |
CHENG X, WEI X R, HAO M D, et al. Changes in soil iron fractions and availability in the loess belt of northern China after 28 years of continuous cultivation and fertilization[J]. Pedosphere, 2019, 29(1):123-131.
doi: 10.1016/S1002-0160(17)60331-X URL |
[23] |
GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant physiology, 1994, 104(3):815-820.
doi: 10.1104/pp.104.3.815 URL |
[24] |
COLOMBO C, PALUMBO G, HE J Z, et al. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes[J]. Journal of soils and sediments, 2014, 14(3):538-548.
doi: 10.1007/s11368-013-0814-z URL |
[25] |
BRIAT J F, CURIE C, GAYMARD F. Iron utilization and metabolism in plants[J]. Current Opinion in Plant Biology, 2007, 10(3):276-282.
doi: 10.1016/j.pbi.2007.04.003 URL |
[26] |
ANCUCEANU R, DINU M, HOVANEŢ M V, et al. A survey of plant iron content: a semi-systematic review[J]. Nutrients, 2015, 7(12):10320-10351.
doi: 10.3390/nu7125535 URL |
[27] | BARKER A V, PILBEAM D J. Handbook of plant nutrition (second edition)[M]. CRC Press, 2015. |
[28] |
YANG X, YE Z Q, SHI C H, et al. Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains[J]. Journal of plant nutrition, 1998, 21(7):1453-1462.
doi: 10.1080/01904169809365495 URL |
[29] | 蔡建成, 曹桂兰, 束爱萍, 等. 水稻地方品种铁含量的差异评价[J]. 植物遗传资源学报, 2009, 10(1):55-59. |
[30] | 高岐, 窦宪民. 土壤—水稻体系总铁含量的测定及其相关性研究[J]. 天津农业科学, 2010, 16(4):66-67. |
[31] | 陈洁, 潘光堂, 李华雄, 等. 玉米种质籽粒铁含量的测定及差异分析[J]. 西南农业学报, 2007, 20(6):1198-1201. |
[32] |
PETIT J M, BRIAT J F, LOBREAUX S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family[J]. Biochemical journal, 2001, 359(3):575-582.
doi: 10.1042/bj3590575 URL |
[33] |
BRIAT J F, DUC C, RAVET K, et al. Ferritins and iron storage in plants[J]. Biochimica et biophysica acta general subjects, 2010, 1800(8):806-814.
doi: 10.1016/j.bbagen.2009.12.003 URL |
[34] | RAVET K, TOURAINE B, BOUCHEREZ J, et al. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis[J]. P1ant Journal for cell & molecular biology, 2010, 57(3):400-412. |
[35] |
SMITH G S, CORNFORTH I S, HENDERSON H V. Iron requirements of C3 and C4 plants[J]. New phytologist, 2010, 97(4):543-556.
doi: 10.1111/nph.1984.97.issue-4 URL |
[36] |
ZHAO G H. Phytoferritin and its implications for human health and nutrition[J]. Biochimica et biophysica acta general subjects, 2010, 1800(8):815-823.
doi: 10.1016/j.bbagen.2010.01.009 URL |
[37] |
MARENTES E, GRUSAK M A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.)[J]. Seed science research, 1998, 8(3):367-375.
doi: 10.1017/S0960258500004293 URL |
[38] |
MATTHIAS H, CHRISTOPHE Z, THOMAS W. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry[J]. Analytical chemistry, 2009, 81(17):7368-7372.
doi: 10.1021/ac900885j URL |
[39] | 倪琳琳, 侯炤琪, 封士达, 等. 改良NH4F掩蔽法在测定植物组织二价铁含量中的应用[J]. 植物生理学报, 2015, 51(8):1347-1349. |
[40] |
DUY D, WANNER G, MEDA A R, et al. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport[J]. The plant cell, 2007, 19(3):986-1006.
doi: 10.1105/tpc.106.047407 URL |
[41] | JEONG J, COHU C, KERKEB L, et al. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions[J]. Proceedings of the national academy of sciences of the united states of america, 2008, 105(30):10619-10624. |
[42] |
BASHIR K, ISHIMARU Y, SHIMO H, N et al. The rice mitochondrial iron transporter is essential for plant growth[J]. Nature communications, 2011, 2:322.
doi: 10.1038/ncomms1326 URL |
[43] |
TARANTINO D, MORANDINI P, RAMIREZ L, et al. Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism[J]. Plant physiology and biochemistry, 2011, 49(5):520-529.
doi: 10.1016/j.plaphy.2011.02.003 URL |
[44] |
LANQUAR V, LELIEVRE F, BOLTE S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. EMBO J, 2005, 24(23):4041-4051.
doi: 10.1038/sj.emboj.7600864 URL |
[45] |
KIM S A, PUNSHON T, LANZIROTTI A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314:1295-1298.
doi: 10.1126/science.1132563 URL |
[46] |
TERRY N, ABADIA J. Function of iron in chloroplasts[J]. Journal of plant nutrition, 1986, 9(3):609-646.
doi: 10.1080/01904168609363470 URL |
[47] |
BASHIR H, QURESHI M I, IBRAHIM M M, et al. Chloroplast and photosystems: impact of cadmium and iron deficiency[J]. Photosynthetica, 2015, 53(3):321-335.
doi: 10.1007/s11099-015-0152-z URL |
[48] |
KROH G E, PILON M. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes[J]. Metallomics, 2020, 12(11):1748-1764
doi: 10.1039/d0mt00175a URL |
[49] |
JAMES D W. General summary of the second international symposium on iron nutrition and interactions in plants[J]. Journal of plant nutrition, 1984, 7(1-5):859-864.
doi: 10.1080/01904168409363249 URL |
[50] | REINBOTHE C, BARTSCH S, EGGMNK L L, et al. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins[J]. Proceedings of the national academy of sciences of the united states of america, 2006, 103(12):4777-4782. |
[51] |
FINAZZI G, PETROUTSOS D, TOMIZIOLI M, et al. Ions channels/transporters and chloroplast regulation[J]. Cell calcium, 2015, 58(1):86-97.
doi: 10.1016/j.ceca.2014.10.002 URL |
[52] |
KIM J, REES D. Structural models for the metal centers in the nitrogenase molybdenum-iron protein[J]. Science, 1992, 257(5077):1677-1682.
doi: 10.1126/science.1529354 URL |
[53] |
SIEDOW J N. Plant lipoxygenase: structure and function[J]. Annual review of plant physiology and molecular biology, 1991, 42(1):145-188.
doi: 10.1146/arplant.1991.42.issue-1 URL |
[54] |
IMAM M C, ZHANG S S, MA J F, et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress[J]. Nutrients, 2017, 9(7):671.
doi: 10.3390/nu9070671 URL |
[55] | 唐建军, 王永锐. 植物铁素营养的生理生态观[J]. 生态科学, 1995, 14(1):40-47. |
[56] |
CURIE C, PANAVIENE Z, LOULERGUE C, et al. Maize yellow stripe1encodes a membrane protein directly involved in Fe (III) uptake[J]. Nature, 2001, 409(6818):346-349.
doi: 10.1038/35053080 URL |
[57] |
HELL R, STEPHAN U W. Iron uptake, trafficking and homeostasis in plants[J]. Planta, 2003, 216:541-551.
doi: 10.1007/s00425-002-0920-4 URL |
[58] |
RÖMHELD V, MARSCHNER H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J]. Plant physiology, 1986, 80(1):175-180.
doi: 10.1104/pp.80.1.175 URL |
[59] |
ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397(6721):694-697.
doi: 10.1038/17800 URL |
[60] |
MUKHERJEE I, CAMPBELL N H, ASH J S, et al. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper[J]. Planta, 2006, 223(6):1178-1190.
doi: 10.1007/s00425-005-0165-0 URL |
[61] |
SANTI S, SCHMIDT W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots[J]. New phytologist, 2009, 183(4):1072-1084.
doi: 10.1111/nph.2009.183.issue-4 URL |
[62] |
TATO L, DE N P, DONNINI H, et al. Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.)[J]. Plant physiology and biochemistry, 2013, 72:145-153.
doi: 10.1016/j.plaphy.2013.05.017 URL |
[63] |
GRILLET L, OUERDANE L, FLIS P, et al. Ascorbate efflux as a new strategy for iron reduction and transport in plants[J]. Journal of biological chemistry, 2014, 289(5):2515-2525.
doi: 10.1074/jbc.M113.514828 URL |
[64] |
LI H, WANG L, YANG Z M. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron deficiency[J]. Gene, 2015, 554(1):16-24.
doi: 10.1016/j.gene.2014.10.004 URL |
[65] |
HSIEH E J, WATERS B M. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synjournal gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis[J]. Journal of experimental botany, 2016, 67(19):5671-5685.
doi: 10.1093/jxb/erw328 URL |
[66] |
ZHANG X X, ZHANG D, SUN W, et al. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis[J]. International journal of molecular sciences, 2019, 20(10):2424
doi: 10.3390/ijms20102424 URL |
[67] | 张林琳, 刘星星, 祝亚昕, 等. 机理Ⅰ植物铁营养的吸收转运及信号调控机制研究进展[J]. 植物营养与肥料学报2021, 37(1):1-15. |
[68] |
HIGUCHI K, SUZUKI K, NAKANISHI H, et al. Cloning of nicotianamine synthase genes, novel genes involved in the biosynjournal of phytosiderophores[J]. Plant physiology, 1999, 119(2):471-480.
doi: 10.1104/pp.119.2.471 URL |
[69] |
INOUE H, TAKAHASHI M, KOBAYASHI T, et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synjournal in rice[J]. Plant molecular biology, 2008, 66(1-2):193-203.
doi: 10.1007/s11103-007-9262-8 URL |
[70] |
NOZOYE T, NAGASAKA S, KOBAYASHI T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of biological chemistry, 2011, 286(7):5446-5454.
doi: 10.1074/jbc.M110.180026 URL |
[71] | SINGH S P, KELLER B, GRUISSEM W, et al. Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat[J]. Theoretical & applied genetics, 2016, 130(2):283-292. |
[72] |
BEASLEY J T, BONNEAU J P, JOHNSON A A T. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.)[J]. PLoS one, 2017, 12(5):e0177061.
doi: 10.1371/journal.pone.0177061 URL |
[73] |
FISHER M, GOKHMAN I, PICK U, et al. A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities[J]. Journal of biological chemistry, 1997, 272(3):1565-1570.
doi: 10.1074/jbc.272.3.1565 URL |
[74] |
SCHWARZ M, ZAMIR A, PICK U. Iron-binding properties of TTf, a salt-induced transferrin from the alga Dunaliella salina[J]. Journal of plant nutrition, 2003, 26(10):2081-2091.
doi: 10.1081/PLN-120024266 URL |
[75] |
MORI S. Iron acquisition by plants[J]. Current opinion in plant biology, 1999, 2(3):250-253.
doi: 10.1016/S1369-5266(99)80043-0 URL |
[76] |
THOMINE S, LELIÈVRE F, DEBARBIEUX E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The plant journal, 2003, 34(5):685-695.
doi: 10.1046/j.1365-313X.2003.01760.x URL |
[77] |
ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific reports, 2012, 2(6071):286.
doi: 10.1038/srep00286 URL |
[78] |
QIN L, HAN P P, CHEN L Y, et al. Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine Max L.)[J]. Frontiers in plant science, 2017, 8:1436.
doi: 10.3389/fpls.2017.01436 URL |
[79] |
BECKER R, FRITZ E, MANTEUFFEL R. Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva[J]. Plant physiology, 1995, 108(1):269-275.
doi: 10.1104/pp.108.1.269 URL |
[80] | THOMINE S, WANG R C, WARD J M, et al. I. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the national academy of sciences of the united states of america, 2000, 97(9):4991-4996. |
[81] |
BERECZKY Z, WANG H Y, SCHUBERT V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of biological chemistry, 2003, 278(27):24697-24704.
doi: 10.1074/jbc.M301365200 URL |
[82] | THOMINE S, LANQUAR V. Iron Transport and Signaling in Plants[M]// Transporters and Pumps in Plant Signaling. Berlin Heidelberg: Springer, 2011. |
[83] |
BUGHIO N, TAKAHASHI M, YOSHIMURA E, et al. Light-dependent iron transport into isolated barley chloroplasts[J]. Plant and cell physiology, 1997, 38(1):101-105.
doi: 10.1093/oxfordjournals.pcp.a029079 URL |
[84] |
FENG H Z, AN F Y, ZHANG S Z, et al. Light-regulated, tissue- and cell differentiation-specific expression of the Arabidopsis Fe (Ⅲ)-chelate reductase gene AtFRO6[J]. Plant physiology, 2006, 140(4):1345-1354.
doi: 10.1104/pp.105.074138 URL |
[85] | HAN J H, SONG X F, LI P, et al. Maize ZmFDR3 localized in chloroplasts is involved in iron transport[J]. Science in china, 2009, 52(9):864-871. |
[86] |
HEAZLEWOOD J L, TONTI-FILIPPINI J S, GOUT A M, et al. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins[J]. The plant cell, 2004, 16(1):241-256.
doi: 10.1105/tpc.016055 URL |
[87] |
BIENFAIT H F. Mechanisms in Fe-efficiency reaction s of higher plants[J]. Journal of plant nutrition, 1988, 11(3):605-629.
doi: 10.1080/01904168809363828 URL |
[88] |
YOKOSHO K, YAMAJI N, UENO D, et al. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice[J]. Plant physiology, 2009, 149:297-305.
doi: 10.1104/pp.108.128132 URL |
[89] |
ROGERS E E, GUERINOT M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis[J]. The plant cell, 2002, 14(8):1787-1799.
doi: 10.1105/tpc.001495 URL |
[90] |
DURRETT T P, GASSMANN W, ROGERS E E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation[J]. Plant physiology, 2007, 144(1):197-205.
doi: 10.1104/pp.107.097162 URL |
[91] |
TSUKAMOTO T, NAKANISHI H, UCHIDA H, et al. 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem[J]. Plant and cell physiology, 2009, 50(1):48-57.
doi: 10.1093/pcp/pcn192 URL |
[92] |
KRÜGER C, BERKOWITZ O, STEPHAN U W, et al. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L[J]. Journal of biological chemistry, 2002, 277(28):25062-25069.
doi: 10.1074/jbc.M201896200 URL |
[93] |
CURIE C, CASSIN G, COUCH D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters[J]. Annals of botany, 2009, 103(1):1-11.
doi: 10.1093/aob/mcn207 URL |
[94] |
NISHIYAMA R, KATO M, NAGATA S, et al. Identification of Zn-nicotianamine and Fe-2-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.)[J]. Plant and cell physiology, 2012, 53(2):381-390.
doi: 10.1093/pcp/pcr188 URL |
[95] |
HAYDON M J, KAWACHI M, WIRTZ M, Kramer U, et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis[J]. The plant cell, 2012, 24(2):724-737.
doi: 10.1105/tpc.111.095042 URL |
[96] |
ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The plant journal, 2010, 62(3):379-390.
doi: 10.1111/tpj.2010.62.issue-3 URL |
[97] |
SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant molecular biology, 2017, 95(4-5):1-13.
doi: 10.1007/s11103-017-0621-9 URL |
[98] |
INOUE H, KOBAYASHI T, NOZOYE T, et al. Rice OsYSL15 is an iron -regulated iron (Ⅲ) - deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings[J]. Journal of biological chemistry, 2009, 284(6):3470-3479.
doi: 10.1074/jbc.M806042200 URL |
[99] |
ZHENG L, YAMAJI N, YOKOSHO K, et al. YSL16 is a phloem - localized transporter of the copper - nicotianamine complex that is responsible for copper distribution in rice[J]. The plant cell, 2012, 24(9):3767-3782.
doi: 10.1105/tpc.112.103820 URL |
[100] |
AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron (Ⅲ) - deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J]. Plant molecular biology, 2009, 70(6):681-692.
doi: 10.1007/s11103-009-9500-3 URL |
[101] |
MENDOZACOZATL D G, XIE Q Q, AKMAKJIAN G Z, et al. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds[J]. Molecular plant, 2014, 7(9):1455-1469.
doi: 10.1093/mp/ssu067 URL |
[102] |
ZHAI Z Y, GAYOMBA S R, JUNG H I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis[J]. The plant cell, 2014, 26(5):2249-2264.
doi: 10.1105/tpc.114.123737 URL |
[103] |
KHAN M A, CASTRO-GUERRERO N A, MCINTURF S A, et al. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots[J]. The plant cell and environment, 2018, 41(10):2263-2276.
doi: 10.1111/pce.v41.10 URL |
[1] | 卢倩倩, 冯琳骄, 王爽, 古力扎提·包尔汗, 褚韧, 周龙. 复合盐碱胁迫对鲜食葡萄生理生化指标的影响[J]. 中国农学通报, 2023, 39(1): 62-70. |
[2] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[3] | 殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41. |
[4] | 董文彩, 刘宪斌, 李红梅, 赵双梅, 包金美, 沈健萍, 梁芳, 鲁美. 不同水平供钙量对木本观赏植物生长发育的影响[J]. 中国农学通报, 2022, 38(8): 42-50. |
[5] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. |
[6] | 高萌, 张冬野, 冯国军, 杨晓旭, 刘畅, 闫志山, 刘大军. 外源硒对60Co-γ辐射下菜豆幼苗生长和生理的影响[J]. 中国农学通报, 2022, 38(7): 35-40. |
[7] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. |
[8] | 谷书杰, 钱禛锋, 娄永明, 沈庆庆, 普凤雅, 曾丹, 马豪, 何丽莲, 李富生. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47. |
[9] | 郑培峰, 姜小蕾, 翟彦霖, 郭绍霞, 李伟. PGPR对莠去津污染土壤中结缕草生长及生理的影响[J]. 中国农学通报, 2022, 38(5): 124-131. |
[10] | 张日谦, 何孟莹, 钱美娇, 张雪, 刘依琳, 宛传捷, 张震. 不同生境中喜旱莲子草雄蕊雌化的发生及其在花序内的分布模式[J]. 中国农学通报, 2022, 38(4): 29-35. |
[11] | 尹逊栋, 吕广德, 牟秋焕, 米勇, 殷复伟, 李宁, 钱兆国, 吴科. 播种量对‘鑫麦296’产量和干物质生产及转运的影响[J]. 中国农学通报, 2022, 38(34): 1-7. |
[12] | 罗志明, 覃伟, 尹炯, 李银煳, 张荣跃, 李俊. 甘蔗种质对甘蔗蓟马的耐害性研究[J]. 中国农学通报, 2022, 38(34): 107-112. |
[13] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[14] | 韩佳希, 范中菡, 董义霞, 吕昕芮, 李红春, 陈庆华, 李洪浩, 林立金, 胡容平. 脱落酸对葡萄幼苗镉积累的影响[J]. 中国农学通报, 2022, 38(34): 46-51. |
[15] | 钱振家, 徐金铖, 余友斌, 张成林, 刘晃. 水流对鱼类游泳行为和生理代谢的影响的研究进展[J]. 中国农学通报, 2022, 38(32): 133-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||