 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (36): 103-110.doi: 10.11924/j.issn.1000-6850.casb2021-0187
        
               		张文静( ), 程建峰(
), 程建峰( ), 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕
), 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕
                  
        
        
        
        
    
收稿日期:2021-02-26
									
				
											修回日期:2021-06-13
									
				
									
				
											出版日期:2021-12-25
									
				
											发布日期:2022-02-15
									
			通讯作者:
					程建峰
							作者简介:张文静,女,2000年出生,江西彭泽人,本科,研究方向:作物生理生态。通信地址:330045 江西省南昌市国家经济技术开发区志敏大道1225号 江西农业大学农学院,Tel:0791-83828081,E-mail: 基金资助:
        
               		ZHANG Wenjing( ), CHENG Jianfeng(
), CHENG Jianfeng( ), LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan
), LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan
			  
			
			
			
                
        
    
Received:2021-02-26
									
				
											Revised:2021-06-13
									
				
									
				
											Online:2021-12-25
									
				
											Published:2022-02-15
									
			Contact:
					CHENG Jianfeng  			     					     	
							摘要:
铁(Fe)是植物体内发现最早和含量最高的必需微量元素,参与许多生理过程和代谢途径,缺铁将严重影响其生长发育和产量品质。植物源食物中的Fe是动物和人类获取Fe的主要途径,摄入不足将损害其健康。为了充分了解Fe在植物体内的代谢生理,推动富Fe植物的培育和富Fe食物的研发,本文归纳了土壤和植物体内Fe的含量、形态及比例,总结了植物体内Fe的分布与功能,比较了植物应对少量可溶性Fe环境下的不同高效吸收策略,分析了Fe在细胞内和长距离运输中的调控机制。在此基础上,针对以往研究中存在的不足提出展望,认为今后应更多地关注:不同物种间的Fe代谢途径的差异及分子机理、Nramp家族基因如何调控植物缺Fe的吞噬机制、质体中铁蛋白(Fer)的氧化沉淀与还原释放机制和提高植物体内Fe含量及生物有效性的生物强化措施。
中图分类号:
张文静, 程建峰, 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕. 植物铁素(Fe)营养的生理研究进展[J]. 中国农学通报, 2021, 37(36): 103-110.
ZHANG Wenjing, CHENG Jianfeng, LIU Jie, HE Ping, WANG Zixuan, ZHANG Zujian, JIANG Haiyan. Nutrition Physiology of Iron (Fe) in Plants: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 103-110.
| [1] | BUESSELER K O, ANDREWS J E, PIKE S M, et al. The effects of iron fertilization on carbon sequestration in the southern ocean[J]. Science, 2004, 304(5669):414-417. doi: 10.1126/science.1086895 URL | 
| [2] | 程建峰. 植物生理学[M]. 南昌: 江西高校出版社, 2019: 98. | 
| [3] | DIXIT S P, RAJAN L, PALANISWAMY D, et al. Importance of iron absorption in human health: An overview[J]. Current nutrition & food science, 2021, 17(3):293-301. | 
| [4] | MASUDA H, AUNG M S, KOBAYASHI T, et al. Iron biofortification: the gateway to overcoming hidden hunger. In: Costa de Oliveira A, Pegoraro C, Ebeling V V. (eds) The Future of Rice Demand: Quality Beyond Productivity[M]. Cham: Springer, 2020:149-177. | 
| [5] | 朴建华, 霍军生. 中国居民营养与健康状况监测报告[M]. 北京: 人民卫生出版社, 2019. | 
| [6] | LUO T, LEI L, CHEN F, Z et al. Iron homeostasis in the human body and nutritional iron deficiency and solutions in China[J]. Journal of food biochemistry, 2018, 42(4):e12673. doi: 10.1111/jfbc.2018.42.issue-6 URL | 
| [7] | 云少君, 赵广华. 植物铁代谢及植物铁蛋白结构与功能研究进展[J]. 生命科学, 2012, 24(8):809-816. | 
| [8] | RAWAT N, NEELAM K, TIWARI V K, et al. Biofortification of cereals to overcome hidden hunger[J]. Plant breeding, 2013, 132(5):437-445. | 
| [9] | GUPTA S, MADHAVAN N K, PUNJAL R, et al. Herbs as a dietary source of iron[J]. Nutrition & food science, 2014, 44(5):443-454. | 
| [10] | BOUIS H E, WELCH R M. Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south[J]. Crop Science, 2010, 50:S20-S32. doi: 10.2135/cropsci2009.09.0531 URL | 
| [11] | BOUIS H E, HOTZ C, MCCLAFFERTY B, et al. Biofortification: a new tool to reduce micronutrient malnutrition[J]. Food & nutrition bulletin, 2011, 32(1Suppl):S31-S40. | 
| [12] | GILLIGAN D O. Biofortification, agricultural technology adoption, and nutrition policy: some lessons and emerging challenges[J]. Cesifo economic studies, 2012, 58(2):405-421. doi: 10.1093/cesifo/ifs020 URL | 
| [13] | MASUDA H, AUNG M S, NISHIZAWA N K. Iron biofortification of rice using different transgenic approaches[J]. Rice, 2013, 6(1):40. doi: 10.1186/1939-8433-6-40 URL | 
| [14] | PRASAD R, SHIVAY Y S, KUMAR D. Agronomic biofortification of cereal grains with iron and zinc[J]. Advances in agronomy, 2014, 125:55-91. | 
| [15] | LEVIN C E, LONG J, SIMLER K R, et al. Cultivating nutrition: a survey of viewpoints on integrating agriculture and nutrition[J]. FCND discussion papers No. 154, International Food Policy Research Institute (IFPRI). 2003. | 
| [16] | 卢士军, 黄家章, 吴鸣, 等. 营养导向型农业的概念,发展与启示[J]. 中国农业科学, 2019, 52(18):3083-3088. | 
| [17] | FAN S, YOSEF S, PANDYA-LORCH R. Linking agriculture to nutrition: the evolution of policy[J]. China agricultural economic review, 2020, 12(4):595-604. doi: 10.1108/CAER-03-2020-0040 URL | 
| [18] | SHARMA I K, SABINA D P, DIRK E, et al. Nutrition-sensitive agriculture: a systematic review of impact pathways to nutrition outcomes[J]. Advances in nutrition, 2021, 12(1):251-275. doi: 10.1093/advances/nmaa103 URL | 
| [19] | YU H, LI J Y. Short and long term challenges in crop breeding[J]. National science review, 2021, 8(2):1. | 
| [20] | MENGEL K, KIRKBY E A. Principles of plant nutrition[M]. Dordrecht: Kluwer Academic Publishers, 2001. | 
| [21] | 地里拜尔·苏里坦, 艾尼瓦尔·买买提, 蔺娟. 土壤中铁锰的形态分布及其有效性研究[J]. 生态学杂志, 2006, 25(2):155-160. | 
| [22] | CHENG X, WEI X R, HAO M D, et al. Changes in soil iron fractions and availability in the loess belt of northern China after 28 years of continuous cultivation and fertilization[J]. Pedosphere, 2019, 29(1):123-131. doi: 10.1016/S1002-0160(17)60331-X URL | 
| [23] | GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant physiology, 1994, 104(3):815-820. doi: 10.1104/pp.104.3.815 URL | 
| [24] | COLOMBO C, PALUMBO G, HE J Z, et al. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes[J]. Journal of soils and sediments, 2014, 14(3):538-548. doi: 10.1007/s11368-013-0814-z URL | 
| [25] | BRIAT J F, CURIE C, GAYMARD F. Iron utilization and metabolism in plants[J]. Current Opinion in Plant Biology, 2007, 10(3):276-282. doi: 10.1016/j.pbi.2007.04.003 URL | 
| [26] | ANCUCEANU R, DINU M, HOVANEŢ M V, et al. A survey of plant iron content: a semi-systematic review[J]. Nutrients, 2015, 7(12):10320-10351. doi: 10.3390/nu7125535 URL | 
| [27] | BARKER A V, PILBEAM D J. Handbook of plant nutrition (second edition)[M]. CRC Press, 2015. | 
| [28] | YANG X, YE Z Q, SHI C H, et al. Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains[J]. Journal of plant nutrition, 1998, 21(7):1453-1462. doi: 10.1080/01904169809365495 URL | 
| [29] | 蔡建成, 曹桂兰, 束爱萍, 等. 水稻地方品种铁含量的差异评价[J]. 植物遗传资源学报, 2009, 10(1):55-59. | 
| [30] | 高岐, 窦宪民. 土壤—水稻体系总铁含量的测定及其相关性研究[J]. 天津农业科学, 2010, 16(4):66-67. | 
| [31] | 陈洁, 潘光堂, 李华雄, 等. 玉米种质籽粒铁含量的测定及差异分析[J]. 西南农业学报, 2007, 20(6):1198-1201. | 
| [32] | PETIT J M, BRIAT J F, LOBREAUX S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family[J]. Biochemical journal, 2001, 359(3):575-582. doi: 10.1042/bj3590575 URL | 
| [33] | BRIAT J F, DUC C, RAVET K, et al. Ferritins and iron storage in plants[J]. Biochimica et biophysica acta general subjects, 2010, 1800(8):806-814. doi: 10.1016/j.bbagen.2009.12.003 URL | 
| [34] | RAVET K, TOURAINE B, BOUCHEREZ J, et al. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis[J]. P1ant Journal for cell & molecular biology, 2010, 57(3):400-412. | 
| [35] | SMITH G S, CORNFORTH I S, HENDERSON H V. Iron requirements of C3 and C4 plants[J]. New phytologist, 2010, 97(4):543-556. doi: 10.1111/nph.1984.97.issue-4 URL | 
| [36] | ZHAO G H. Phytoferritin and its implications for human health and nutrition[J]. Biochimica et biophysica acta general subjects, 2010, 1800(8):815-823. doi: 10.1016/j.bbagen.2010.01.009 URL | 
| [37] | MARENTES E, GRUSAK M A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.)[J]. Seed science research, 1998, 8(3):367-375. doi: 10.1017/S0960258500004293 URL | 
| [38] | MATTHIAS H, CHRISTOPHE Z, THOMAS W. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry[J]. Analytical chemistry, 2009, 81(17):7368-7372. doi: 10.1021/ac900885j URL | 
| [39] | 倪琳琳, 侯炤琪, 封士达, 等. 改良NH4F掩蔽法在测定植物组织二价铁含量中的应用[J]. 植物生理学报, 2015, 51(8):1347-1349. | 
| [40] | DUY D, WANNER G, MEDA A R, et al. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport[J]. The plant cell, 2007, 19(3):986-1006. doi: 10.1105/tpc.106.047407 URL | 
| [41] | JEONG J, COHU C, KERKEB L, et al. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions[J]. Proceedings of the national academy of sciences of the united states of america, 2008, 105(30):10619-10624. | 
| [42] | BASHIR K, ISHIMARU Y, SHIMO H, N et al. The rice mitochondrial iron transporter is essential for plant growth[J]. Nature communications, 2011, 2:322. doi: 10.1038/ncomms1326 URL | 
| [43] | TARANTINO D, MORANDINI P, RAMIREZ L, et al. Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism[J]. Plant physiology and biochemistry, 2011, 49(5):520-529. doi: 10.1016/j.plaphy.2011.02.003 URL | 
| [44] | LANQUAR V, LELIEVRE F, BOLTE S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. EMBO J, 2005, 24(23):4041-4051. doi: 10.1038/sj.emboj.7600864 URL | 
| [45] | KIM S A, PUNSHON T, LANZIROTTI A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314:1295-1298. doi: 10.1126/science.1132563 URL | 
| [46] | TERRY N, ABADIA J. Function of iron in chloroplasts[J]. Journal of plant nutrition, 1986, 9(3):609-646. doi: 10.1080/01904168609363470 URL | 
| [47] | BASHIR H, QURESHI M I, IBRAHIM M M, et al. Chloroplast and photosystems: impact of cadmium and iron deficiency[J]. Photosynthetica, 2015, 53(3):321-335. doi: 10.1007/s11099-015-0152-z URL | 
| [48] | KROH G E, PILON M. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes[J]. Metallomics, 2020, 12(11):1748-1764 doi: 10.1039/d0mt00175a URL | 
| [49] | JAMES D W. General summary of the second international symposium on iron nutrition and interactions in plants[J]. Journal of plant nutrition, 1984, 7(1-5):859-864. doi: 10.1080/01904168409363249 URL | 
| [50] | REINBOTHE C, BARTSCH S, EGGMNK L L, et al. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins[J]. Proceedings of the national academy of sciences of the united states of america, 2006, 103(12):4777-4782. | 
| [51] | FINAZZI G, PETROUTSOS D, TOMIZIOLI M, et al. Ions channels/transporters and chloroplast regulation[J]. Cell calcium, 2015, 58(1):86-97. doi: 10.1016/j.ceca.2014.10.002 URL | 
| [52] | KIM J, REES D. Structural models for the metal centers in the nitrogenase molybdenum-iron protein[J]. Science, 1992, 257(5077):1677-1682. doi: 10.1126/science.1529354 URL | 
| [53] | SIEDOW J N. Plant lipoxygenase: structure and function[J]. Annual review of plant physiology and molecular biology, 1991, 42(1):145-188. doi: 10.1146/arplant.1991.42.issue-1 URL | 
| [54] | IMAM M C, ZHANG S S, MA J F, et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress[J]. Nutrients, 2017, 9(7):671. doi: 10.3390/nu9070671 URL | 
| [55] | 唐建军, 王永锐. 植物铁素营养的生理生态观[J]. 生态科学, 1995, 14(1):40-47. | 
| [56] | CURIE C, PANAVIENE Z, LOULERGUE C, et al. Maize yellow stripe1encodes a membrane protein directly involved in Fe (III) uptake[J]. Nature, 2001, 409(6818):346-349. doi: 10.1038/35053080 URL | 
| [57] | HELL R, STEPHAN U W. Iron uptake, trafficking and homeostasis in plants[J]. Planta, 2003, 216:541-551. doi: 10.1007/s00425-002-0920-4 URL | 
| [58] | RÖMHELD V, MARSCHNER H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J]. Plant physiology, 1986, 80(1):175-180. doi: 10.1104/pp.80.1.175 URL | 
| [59] | ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397(6721):694-697. doi: 10.1038/17800 URL | 
| [60] | MUKHERJEE I, CAMPBELL N H, ASH J S, et al. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper[J]. Planta, 2006, 223(6):1178-1190. doi: 10.1007/s00425-005-0165-0 URL | 
| [61] | SANTI S, SCHMIDT W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots[J]. New phytologist, 2009, 183(4):1072-1084. doi: 10.1111/nph.2009.183.issue-4 URL | 
| [62] | TATO L, DE N P, DONNINI H, et al. Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.)[J]. Plant physiology and biochemistry, 2013, 72:145-153. doi: 10.1016/j.plaphy.2013.05.017 URL | 
| [63] | GRILLET L, OUERDANE L, FLIS P, et al. Ascorbate efflux as a new strategy for iron reduction and transport in plants[J]. Journal of biological chemistry, 2014, 289(5):2515-2525. doi: 10.1074/jbc.M113.514828 URL | 
| [64] | LI H, WANG L, YANG Z M. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron deficiency[J]. Gene, 2015, 554(1):16-24. doi: 10.1016/j.gene.2014.10.004 URL | 
| [65] | HSIEH E J, WATERS B M. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synjournal gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis[J]. Journal of experimental botany, 2016, 67(19):5671-5685. doi: 10.1093/jxb/erw328 URL | 
| [66] | ZHANG X X, ZHANG D, SUN W, et al. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis[J]. International journal of molecular sciences, 2019, 20(10):2424 doi: 10.3390/ijms20102424 URL | 
| [67] | 张林琳, 刘星星, 祝亚昕, 等. 机理Ⅰ植物铁营养的吸收转运及信号调控机制研究进展[J]. 植物营养与肥料学报2021, 37(1):1-15. | 
| [68] | HIGUCHI K, SUZUKI K, NAKANISHI H, et al. Cloning of nicotianamine synthase genes, novel genes involved in the biosynjournal of phytosiderophores[J]. Plant physiology, 1999, 119(2):471-480. doi: 10.1104/pp.119.2.471 URL | 
| [69] | INOUE H, TAKAHASHI M, KOBAYASHI T, et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synjournal in rice[J]. Plant molecular biology, 2008, 66(1-2):193-203. doi: 10.1007/s11103-007-9262-8 URL | 
| [70] | NOZOYE T, NAGASAKA S, KOBAYASHI T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of biological chemistry, 2011, 286(7):5446-5454. doi: 10.1074/jbc.M110.180026 URL | 
| [71] | SINGH S P, KELLER B, GRUISSEM W, et al. Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat[J]. Theoretical & applied genetics, 2016, 130(2):283-292. | 
| [72] | BEASLEY J T, BONNEAU J P, JOHNSON A A T. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.)[J]. PLoS one, 2017, 12(5):e0177061. doi: 10.1371/journal.pone.0177061 URL | 
| [73] | FISHER M, GOKHMAN I, PICK U, et al. A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities[J]. Journal of biological chemistry, 1997, 272(3):1565-1570. doi: 10.1074/jbc.272.3.1565 URL | 
| [74] | SCHWARZ M, ZAMIR A, PICK U. Iron-binding properties of TTf, a salt-induced transferrin from the alga Dunaliella salina[J]. Journal of plant nutrition, 2003, 26(10):2081-2091. doi: 10.1081/PLN-120024266 URL | 
| [75] | MORI S. Iron acquisition by plants[J]. Current opinion in plant biology, 1999, 2(3):250-253. doi: 10.1016/S1369-5266(99)80043-0 URL | 
| [76] | THOMINE S, LELIÈVRE F, DEBARBIEUX E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The plant journal, 2003, 34(5):685-695. doi: 10.1046/j.1365-313X.2003.01760.x URL | 
| [77] | ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific reports, 2012, 2(6071):286. doi: 10.1038/srep00286 URL | 
| [78] | QIN L, HAN P P, CHEN L Y, et al. Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine Max L.)[J]. Frontiers in plant science, 2017, 8:1436. doi: 10.3389/fpls.2017.01436 URL | 
| [79] | BECKER R, FRITZ E, MANTEUFFEL R. Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva[J]. Plant physiology, 1995, 108(1):269-275. doi: 10.1104/pp.108.1.269 URL | 
| [80] | THOMINE S, WANG R C, WARD J M, et al. I. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the national academy of sciences of the united states of america, 2000, 97(9):4991-4996. | 
| [81] | BERECZKY Z, WANG H Y, SCHUBERT V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of biological chemistry, 2003, 278(27):24697-24704. doi: 10.1074/jbc.M301365200 URL | 
| [82] | THOMINE S, LANQUAR V. Iron Transport and Signaling in Plants[M]// Transporters and Pumps in Plant Signaling. Berlin Heidelberg: Springer, 2011. | 
| [83] | BUGHIO N, TAKAHASHI M, YOSHIMURA E, et al. Light-dependent iron transport into isolated barley chloroplasts[J]. Plant and cell physiology, 1997, 38(1):101-105. doi: 10.1093/oxfordjournals.pcp.a029079 URL | 
| [84] | FENG H Z, AN F Y, ZHANG S Z, et al. Light-regulated, tissue- and cell differentiation-specific expression of the Arabidopsis Fe (Ⅲ)-chelate reductase gene AtFRO6[J]. Plant physiology, 2006, 140(4):1345-1354. doi: 10.1104/pp.105.074138 URL | 
| [85] | HAN J H, SONG X F, LI P, et al. Maize ZmFDR3 localized in chloroplasts is involved in iron transport[J]. Science in china, 2009, 52(9):864-871. | 
| [86] | HEAZLEWOOD J L, TONTI-FILIPPINI J S, GOUT A M, et al. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins[J]. The plant cell, 2004, 16(1):241-256. doi: 10.1105/tpc.016055 URL | 
| [87] | BIENFAIT H F. Mechanisms in Fe-efficiency reaction s of higher plants[J]. Journal of plant nutrition, 1988, 11(3):605-629. doi: 10.1080/01904168809363828 URL | 
| [88] | YOKOSHO K, YAMAJI N, UENO D, et al. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice[J]. Plant physiology, 2009, 149:297-305. doi: 10.1104/pp.108.128132 URL | 
| [89] | ROGERS E E, GUERINOT M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis[J]. The plant cell, 2002, 14(8):1787-1799. doi: 10.1105/tpc.001495 URL | 
| [90] | DURRETT T P, GASSMANN W, ROGERS E E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation[J]. Plant physiology, 2007, 144(1):197-205. doi: 10.1104/pp.107.097162 URL | 
| [91] | TSUKAMOTO T, NAKANISHI H, UCHIDA H, et al. 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem[J]. Plant and cell physiology, 2009, 50(1):48-57. doi: 10.1093/pcp/pcn192 URL | 
| [92] | KRÜGER C, BERKOWITZ O, STEPHAN U W, et al. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L[J]. Journal of biological chemistry, 2002, 277(28):25062-25069. doi: 10.1074/jbc.M201896200 URL | 
| [93] | CURIE C, CASSIN G, COUCH D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters[J]. Annals of botany, 2009, 103(1):1-11. doi: 10.1093/aob/mcn207 URL | 
| [94] | NISHIYAMA R, KATO M, NAGATA S, et al. Identification of Zn-nicotianamine and Fe-2-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.)[J]. Plant and cell physiology, 2012, 53(2):381-390. doi: 10.1093/pcp/pcr188 URL | 
| [95] | HAYDON M J, KAWACHI M, WIRTZ M, Kramer U, et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis[J]. The plant cell, 2012, 24(2):724-737. doi: 10.1105/tpc.111.095042 URL | 
| [96] | ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The plant journal, 2010, 62(3):379-390. doi: 10.1111/tpj.2010.62.issue-3 URL | 
| [97] | SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant molecular biology, 2017, 95(4-5):1-13. doi: 10.1007/s11103-017-0621-9 URL | 
| [98] | INOUE H, KOBAYASHI T, NOZOYE T, et al. Rice OsYSL15 is an iron -regulated iron (Ⅲ) - deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings[J]. Journal of biological chemistry, 2009, 284(6):3470-3479. doi: 10.1074/jbc.M806042200 URL | 
| [99] | ZHENG L, YAMAJI N, YOKOSHO K, et al. YSL16 is a phloem - localized transporter of the copper - nicotianamine complex that is responsible for copper distribution in rice[J]. The plant cell, 2012, 24(9):3767-3782. doi: 10.1105/tpc.112.103820 URL | 
| [100] | AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron (Ⅲ) - deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J]. Plant molecular biology, 2009, 70(6):681-692. doi: 10.1007/s11103-009-9500-3 URL | 
| [101] | MENDOZACOZATL D G, XIE Q Q, AKMAKJIAN G Z, et al. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds[J]. Molecular plant, 2014, 7(9):1455-1469. doi: 10.1093/mp/ssu067 URL | 
| [102] | ZHAI Z Y, GAYOMBA S R, JUNG H I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis[J]. The plant cell, 2014, 26(5):2249-2264. doi: 10.1105/tpc.114.123737 URL | 
| [103] | KHAN M A, CASTRO-GUERRERO N A, MCINTURF S A, et al. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots[J]. The plant cell and environment, 2018, 41(10):2263-2276. doi: 10.1111/pce.v41.10 URL | 
| [1] | 卢倩倩, 冯琳骄, 王爽, 古力扎提·包尔汗, 褚韧, 周龙. 复合盐碱胁迫对鲜食葡萄生理生化指标的影响[J]. 中国农学通报, 2023, 39(1): 62-70. | 
| [2] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. | 
| [3] | 殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41. | 
| [4] | 董文彩, 刘宪斌, 李红梅, 赵双梅, 包金美, 沈健萍, 梁芳, 鲁美. 不同水平供钙量对木本观赏植物生长发育的影响[J]. 中国农学通报, 2022, 38(8): 42-50. | 
| [5] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. | 
| [6] | 高萌, 张冬野, 冯国军, 杨晓旭, 刘畅, 闫志山, 刘大军. 外源硒对60Co-γ辐射下菜豆幼苗生长和生理的影响[J]. 中国农学通报, 2022, 38(7): 35-40. | 
| [7] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. | 
| [8] | 谷书杰, 钱禛锋, 娄永明, 沈庆庆, 普凤雅, 曾丹, 马豪, 何丽莲, 李富生. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47. | 
| [9] | 郑培峰, 姜小蕾, 翟彦霖, 郭绍霞, 李伟. PGPR对莠去津污染土壤中结缕草生长及生理的影响[J]. 中国农学通报, 2022, 38(5): 124-131. | 
| [10] | 张日谦, 何孟莹, 钱美娇, 张雪, 刘依琳, 宛传捷, 张震. 不同生境中喜旱莲子草雄蕊雌化的发生及其在花序内的分布模式[J]. 中国农学通报, 2022, 38(4): 29-35. | 
| [11] | 尹逊栋, 吕广德, 牟秋焕, 米勇, 殷复伟, 李宁, 钱兆国, 吴科. 播种量对‘鑫麦296’产量和干物质生产及转运的影响[J]. 中国农学通报, 2022, 38(34): 1-7. | 
| [12] | 罗志明, 覃伟, 尹炯, 李银煳, 张荣跃, 李俊. 甘蔗种质对甘蔗蓟马的耐害性研究[J]. 中国农学通报, 2022, 38(34): 107-112. | 
| [13] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. | 
| [14] | 韩佳希, 范中菡, 董义霞, 吕昕芮, 李红春, 陈庆华, 李洪浩, 林立金, 胡容平. 脱落酸对葡萄幼苗镉积累的影响[J]. 中国农学通报, 2022, 38(34): 46-51. | 
| [15] | 钱振家, 徐金铖, 余友斌, 张成林, 刘晃. 水流对鱼类游泳行为和生理代谢的影响的研究进展[J]. 中国农学通报, 2022, 38(32): 133-138. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||